It is a type capacitor is in which two metal plates arranged in such a way so that they are connected in parallel . The potential energy is stored in the capacitor will be 2.7×10⁻⁵.
<h3>What is parallel plate capacitor ?</h3>
It is an type capacitor is an in which two metal plates arranged in such a way so that they are connected in parallel and have some distance between them.
A dielectric medium is a must in between these plates. helps to stop the flow of electric current through it due to its non-conductive nature .
The given data in the problem is;
Q is the charge= 1.5 µC
V is the change in voltage across the plates is = 36 V.
U is the potential energy=?
The formula for the potential energy is given by;

Hence the potential energy is stored in the capacitor will be 2.7×10⁻⁵.
To learn more about the parallel plate capacitor refer to the link;
brainly.com/question/12883102
Answer:
, downward
Explanation:
There is only one force acting on the ball during its motion: the force of gravity, which is given by

where
m is the mass of the ball
is the acceleration of gravity (downward)
According to Newton's second law,

where F is the net force on the object and a is its acceleration. Rearranging for a,

As we said, the only force acting on the ball is gravity, so F = mg and the acceleration of the ball is:

Therefore, the ball has a constant acceleration of
downward for the entire motion.
Answer:
v₂ = 7/ (0.5)= 14 m/s
Explanation:
Flow rate of the fluid
Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.
The formula for calculated the flow rate is:
Q= v*A Formula (1)
Where :
Q is the Flow rate (m³/s)
A is the cross sectional area of a section of the pipe (m²)
v is the speed of the fluid in that section (m/s)
Equation of continuity
The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:
Q₁= Q₂
Data
A₁ = 2m² : cross sectional area 1
v₁ = 3.5 m/s : fluid speed through A₁
A₂ = 0.5 m² : cross sectional area 2
Calculation of the fluid speed through A₂
We aply the equation of continuity:
Q₁= Q₂
We aply the equation of Formula (1):
v₁*A₁= v₂*A₂
We replace data
(3.5)*(2)= v₂*(0.5)
7 = v₂*(0.5)
v₂ = 7/ (0.5)
v₂ = 14 m/s