Answer:
The cylinder’s total kinetic energy is 1.918 J.
Explanation:
Given that,
Mass = 4.1 kg
Radius = 0.057 m
Speed = 0.79 m/s
We need to calculate the linear kinetic energy
Using formula of linear kinetic energy



We need to calculate the rotational kinetic energy




The total kinetic energy is given by



Hence, The cylinder’s total kinetic energy is 1.918 J.
The correct answer is alpha
Answer:
5000
Explanation:
F=ke where f is the force, k is the spring constant, e is the extension....all in standard units
Answer:
0.83 m/s
Explanation:
FIrst of all, we have to find the time of flight, i.e. the time the baseball needs to reach the ground. This can be done by using the equation for the vertical motion:

where
h is the initial height
u = 0 is the initial vertical velocity
g = 9.8 m/s^2 is the acceleration of gravity
t is the time
Substituting h = 1.8 m and solving for t,

We know that the horizontal distance travelled by the ball is
d = 0.5 m
Therefore, we can find the horizontal velocity (which is constant during the whole motion):

1.53 m/s toward the beach
Explanation:
The magnitude of the velocity of the runner is given by:

where
d is the displacement of the runner
t is the time taken
In this case, d=110 m and t=72 s, so the velocity of the runner is

Velocity is a vector, so it consists of both magnitude and direction: we already calculate the magnitude, while the direction is given by the problem, toward the beach.