The speed is changing its direction all the time. There
is an acceleration which changes the direction of the speed – that is called
centripetal acceleration. Only uniform linear motions are considered to have no
acceleration.
This is the general formula for acceleration
a = dv/dt
When calculating dv, you should keep in mind the change
in the velocity vector’s direction. You can easily see in a graph that with dt
tending to 0 (so the length of the arc covered is also tending to 0), the difference
between vectors Vf and V0 has a direction which is perpendicular to velocity
(the shorter the arc, the closest the angle is to 90 degrees).
There is a formula (which can be deducted from the
previous formula) which allows you to calculate the acceleration:
a = v^2/r
Let’s talk about the units:
v is in m/s
r is in m
so v^2/r
is in (m/s)^2/m = (m^2/s^2)/m = m/s^2
which is the same unit as dv/dt:
dv/dt = (m/s)/s= m/s^2
Answer:

Explanation:
First of all, let's convert from nanometres to metres, keeping in mind that

So we have:

Now we can convert from metres to centimetres, keeping in mind that

So, we find:

A free-falling object is an object moving under the effect of gravitational forces alone
The correct option to select for the True or False question is False
The reason the above selected option is correct is as follows:
According to Newton's second law of motion, we have;
Force = Mass × Acceleration
The force of gravity is 
Where;

m = The mass of the object
∴ The force acting on an object in free fall,
= m × g
Therefore the acceleration of an object in free fall is the constant acceleration due to gravity, and it therefore, does not change with time
The correct option for the question, acceleration of a free-falling object in a frictionless environment increases as a function of time is <u>False</u>
<u></u>
Learn more about object in free fall here:
brainly.com/question/13712424
brainly.com/question/11698474
Answer:
the pendulum loses momentum and stops because of gravity and wind resistance. it does not violate the law of conservation of energy because it is not gaining any more momentum than what it had started with
Explanation: