Answer:
[H₃O⁺] = 3.162 × 10⁻⁹ moles / liter
Explanation:
The pH is calculated with the formula:
pH = -lg[H₃O⁺]
From here the concentration of hydronium ion (H₃O⁺) will be:
[H₃O⁺] = 
[H₃O⁺] = 
[H₃O⁺] = 3.162 × 10⁻⁹ moles / liter
You should give answers since some people will just try and find any answer, which happened to me. So like if you have answers for the question just put them like A B C D kinda like true or false for others to know what they got instead of giving them more work, and then they just give you random answers.
Answer:
option C= 12.40
Explanation:
Formula:
pH + pOH = 14
First of all we will calculate the pH.
pH = - log [H⁺]
pH = - log [0.025]
pH = - (-1.6)
pH = 1.6
Now we will put the values in formula,
pH + pOH = 14
pOH = 14-pH
pOH = 14 -1.6
pOH = 12.4
The pOH of solution is 12.4.
Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.
A. deposition
this means that it was moved from one place to another and can be transported by ice, water, gravity, or wind.