In order to overcome an object’s inertia (resistance to change), it must be acted upon by an unbalanced force, so the answer to the problem is letter C.
Hi there!
We can begin by solving for the linear acceleration as we are given sufficient values to do so.
We can use the following equation:
vf = vi + at
Plug in given values:
4 = 9.7 + 4.4a
Solve for a:
a = -1.295 m/s²
We can use the following equation to convert from linear to angular acceleration:
a = αr
a/r = α
Thus:
-1.295/0.61 = -2.124 rad/sec² ⇒ 2.124 rad/sec² since counterclockwise is positive.
Now, we can find the angular displacement using the following:
θ = ωit + 1/2αt²
We must convert the initial velocity of the tire (9.7 m/s) to angular velocity:
v = ωr
v/r = ω
9.7/0.61 = 15.9 rad/sec
Plug into the equation:
θ = 15.9(4.4) + 1/2(2.124)(4.4²) = 20.56 rad
They can be described as small in quantity and very dangerously radioactive.
<span>LOCATION Z, because it is only 2 away from the coast.
The rest are farther inland
hope this helps</span>
It would either break or stop depends on the density