Answer:
weight = 25*10 =250 N
Explanation:
g must be given in units of m/s^2
The weight of any type of body will be the product of his mass by the gravity
where:
m =mass [kg]
F = force [N] or [kg*m/s^2]
g = acceleration [m/s^2]
Speed of particle B is 2v₀/3 m/s to the left. Particle A and particle B will always have equal speed since they experience equal forces.
<h3>Conservation of energy</h3>
The speed and direction of the particle B is determined by applying the principle of conservation of energy as follows;
K.E₁ + P.E₁ = K.E₂ + P.E₂


At any given position, the speed of particle A and particle B will be equal, since they experience equal force and they have equal masses.
The complete question is below:
Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the system of two particles assosicated with the force is given by the equation U=G/r 2, where r is the distance between the two particles and G is a positive constant. At time t=T1 particle A is observed to be traveling with speed 2vo/3 to the left. The speed and direction of motion of particle B is ?
Learn more about conservation of energy here: brainly.com/question/166559
Answer:

Explanation:
Data provided in the question:
Height above the ground, H= 5.0m
Range of the ball, R= 20 m
Initial horizontal velocity =
Initial vertical velocity=
(Since ball was thrown horizontally only)
Acceleration acting horizontally,
= 0 m/s² [ Since no acceleration acts horizontally) ]
Vertical Acceleration,
= 9.8 m/s² (Since only gravity acts on it)
Let 't' be the time taken to reach ground
Therefore, using equations of motion, we have



Then using Equations of motion for horizontal motion,



Answer:
1 atom of oxygen
2 atoms of hydrogen in each molecule
Each water molecule contains 3 atoms making the H2O formula