Considering the definition of kinetic energy, the bullet has a kinetic energy of 156.25 J.
<h3>Kinetic energy</h3>
Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.
Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and in a rest position, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its rest state by applying a force to it.
The kinetic energy is represented by the following expression:
Ec= ½ mv²
Where:
- Ec is the kinetic energy, which is measured in Joules (J).
- m is the mass measured in kilograms (kg).
- v is the speed measured in meters over seconds (m/s).
<h3>Kinetic energy of a bullet</h3>
In this case, you know:
Replacing in the definition of kinetic energy:
Ec= ½ ×0.500 kg× (25 m/s)²
Solving:
<u><em>Ec= 156.25 J</em></u>
Finally, the bullet has a kinetic energy of 156.25 J.
Learn more about kinetic energy:
brainly.com/question/25959744
brainly.com/question/14028892
#SPJ1
Answer:

Explanation:
Given that:
- Area of the plate of capacitor 1= Area of the plate of capacitor 2=A
- separation distance of capacitor 2,

- separation distance of capacitor 1,

- quantity of charge on capacitor 2,

- quantity of charge on capacitor 1,

We know that the Capacitance of a parallel plate capacitor is directly proportional to the area and inversely proportional to the distance of separation.
Mathematically given as:
.....................................(1)
where:
k = relative permittivity of the dielectric material between the plates= 1 for air

From eq. (1)
For capacitor 2:

For capacitor 1:

![C_1=\frac{1}{2} [ \frac{k.\epsilon_0.A}{d}]](https://tex.z-dn.net/?f=C_1%3D%5Cfrac%7B1%7D%7B2%7D%20%5B%20%5Cfrac%7Bk.%5Cepsilon_0.A%7D%7Bd%7D%5D)
We know, potential differences across a capacitor is given by:
..........................................(2)
where, Q = charge on the capacitor plates.
for capacitor 2:


& for capacitor 1:


![V_1=8\times [\frac{Q.d}{k.\epsilon_0.A}]](https://tex.z-dn.net/?f=V_1%3D8%5Ctimes%20%5B%5Cfrac%7BQ.d%7D%7Bk.%5Cepsilon_0.A%7D%5D)

Based on the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- The location will correspond to any point on the same latitude as A
<h3>What are lines of longitude?</h3>
Lines of longitude are imaginary lines which run along the earth from the North pole. to the South pole.
Longitude lines divide the earth into semi-circles.
Longitude lines are known as meridians and each meridian measures one arc degree of longitude.
Considering the attached image:
- The name of the longitude line that passes through point A is the International Date Line
- The longitude 180° is experiencing solar noon because the rays of the sun are parallel to it.
- The longitude for 6 pm is 90° W, 12 midnight is 0°, and 6 am is 90° E
- Longitude 120° is B
- Solar time at Point B is 4 pm
- the location will correspond to any point on the same latitude as A
In conclusion, longitude lines are imaginary lines and run from North to South on the earth.
Learn more about lines of longitude at: brainly.com/question/1939015
#SPJ1
Answer:
A) a = 2.31[m/s^2]; B) t = 14.4 [s]
Explanation:
We can solve this problem using the kinematic equations, but firts we must identify the data:
Vf= final velocity = take off velocity = 120[km/h]
Vi= initial velocity = 0, because the plane starts to move from the rest.
dx= distance to run = 240 [m]
![v_{f} ^{2} =v_{i} ^{2}+2*g*dx\\where:\\v_{f}=120[\frac{km}{h} ]*\frac{1hr}{3600sg} * \frac{1000m}{1km} =33.33[m/s]\\\\Replacing\\33.33^{2}=0+2*a*(240)\\ a=\frac{11108.88}{2*240}\\ a=2.31[m/s^2]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%20%3Dv_%7Bi%7D%20%5E%7B2%7D%2B2%2Ag%2Adx%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%3D120%5B%5Cfrac%7Bkm%7D%7Bh%7D%20%5D%2A%5Cfrac%7B1hr%7D%7B3600sg%7D%20%2A%20%5Cfrac%7B1000m%7D%7B1km%7D%20%3D33.33%5Bm%2Fs%5D%5C%5C%5C%5CReplacing%5C%5C33.33%5E%7B2%7D%3D0%2B2%2Aa%2A%28240%29%5C%5C%20a%3D%5Cfrac%7B11108.88%7D%7B2%2A240%7D%5C%5C%20%20a%3D2.31%5Bm%2Fs%5E2%5D%5C%5C)
To find the time we must use another kinematic equation.
![v_{f} =v_{i} +a*t\\replacing:\\33.33=0+(2.31*t)\\t=\frac{33.33}{2.31}\\ t=14.4[s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Creplacing%3A%5C%5C33.33%3D0%2B%282.31%2At%29%5C%5Ct%3D%5Cfrac%7B33.33%7D%7B2.31%7D%5C%5C%20t%3D14.4%5Bs%5D)
An airplane has a large amount of kinetic energy in flight due to its large mass and fast velocity.