An apple falling to the ground is not an example of centripetal acceleration.
Answer:
Therefore the surface area of the balloon is increased at 4 cm³/s.
Explanation:
The balloon is being filled with air at a rate of 10 cm³/s
It means the volume of the balloon is increased at a rate 10 cm³/s.
i.e 
Consider r be the radius of the balloon.
The volume of of a sphere is

Differentiate with respect to t



The surface of area of the balloon is(S) = 

Differentiate with respect to t


Putting the value of


Given that r = 5 cm
=4 cm³/s
Therefore the surface area of the balloon is increased at 4 cm³/s.
Answer:
a
The height is 
b
The horizontal distance is 
Explanation:
From the question we are told that
The speed is 
The angle is 
The height of the cannon from the ground is h = 2 m
The distance of the net from the ground is k = 1 m
Generally the maximum height she reaches is mathematically represented as

=> ![H = \frac{(15)^2 [sin (40)]^2 }{2 * 9.8} + 2](https://tex.z-dn.net/?f=H%20%20%3D%20%20%5Cfrac%7B%2815%29%5E2%20%5Bsin%20%2840%29%5D%5E2%20%7D%7B2%20%2A%209.8%7D%20%20%2B%20%202)
=> 
Generally from kinematic equation

Here s is the displacement which is mathematically represented as
s = [-(h-k)]
=> s = -(2-1)
=> s = -1 m
There reason why s = -1 m is because upward motion canceled the downward motion remaining only the distance of the net from the ground which was covered during the first half but not covered during the second half
a = -g = -9.8

So

=> 
using quadratic formula to solve the equation we have

Generally distance covered along the horizontal is

=> 
=> 
Since they do not stick after collision hence collision is elastic. In elastic collision, both momentum and kinetic energy is conserved because in this type of collision, first body deforms but then quickly regains its former shape and transfers its kinetic energy to the second pluck.
So kinetic energy is conserved.
Answer:
A student is running at her top speed of 5. 4m/s to catch a bus.
Explanation:
Thats to fast