Answer:
<em>The initial speed of the sprinter was 2.2 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
The following relation applies:

Where a is the constant acceleration, vo the initial speed, vf the final speed, and t the time.
The sprinter speeds up from an unknown initial speed to vf=3 m/s in t=2 seconds with an acceleration of
.
To find the initial speed, we solve the equation for vo:

Substituting the values:



The initial speed of the sprinter was 2.2 m/s
The amount left of a radioactive sample amount N0 if the decay constant is 0.00125 seconds and the time is 180 seconds is 0.7999 N.
<h3>What is half-life?</h3>
The time it takes for half of the original population of radioactive atoms to decay is called the half-life. The relationship between the half-life T1/2 and the decay constant is given by T1/2 = 0.693/λ.
- N=N0e−λt
- given λ = 0.00125 seconds
- t = 180 seconds
- Now putting values.
- N=N0e−λt = 0.799
- N= 0.7999.
Read more about the radioactive :
brainly.com/question/2320811
#SPJ1
Answer:
The tension is 75.22 Newtons
Explanation:
The velocity of a wave on a rope is:
(1)
With T the tension, L the length of the string and M its mass.
Another more general expression for the velocity of a wave is the product of the wavelength (λ) and the frequency (f) of the wave:
(2)
We can equate expression (1) and (2):
=
Solving for T
(3)
For this expression we already know M, f, and L. And indirectly we already know λ too. On a string fixed at its extremes we have standing waves ant the equation of the wavelength in function the number of the harmonic
is:

It's is important to note that in our case L the length of the string is different from l the distance between the pin and fret to produce a Concert A, so for the first harmonic:

We can now find T on (3) using all the values we have:


<h3>Solution for the above question : -</h3>
Ohm's law states that :
the terms used are :
let's solve for electric current :
