Explanation :
The forces acting on hot- air balloon are:
Weight, (W)
Force due to air resistance, (F)
Upthrust force, (U)
Its weight W is acting in downward direction. The upthrust force U acts in upward direction. When the balloon is moving upward, the air resistance is in downward and vice versa.
In this case, the hot-air balloon descends vertically at constant speed.
so, 
and 
so,
....................(1)
when it is ascending let the weight that it is releasing is R, so
..........(2)
solving equation (1) and (2)

2F is the weight of material that must be released from the balloon so that it ascends vertically at the same constant speed.
Answer:
force=12000
Explanation:
F=m*a aka force equals mass times acceleration so 800*15=12000
When dealing with multiple forces acting on a body, it is advisable to draw a free-body diagram like that shown in the picture. There are four forces acting on the box: weight (W) pointing straight down, normal force perpendicular to the slope denoted as Fn, force used to push the box upwards along the slope and the frictional force acting opposite to the direction of motion of the box denoted as Ff. Frictional force is equal to coefficient of kinetic friction (μk) multiplied with Fn.
∑Fy = Fn - mgcos30° = 0
Fn = (50)(9.81)(cos 16) = 471.5 N
When in motion, the net force is equal to mass times acceleration according to Newton's 2nd Law of Motion:
Fnet = F - μk*Fn - mgsin30° = ma
250 - (0.2)(471.5 N) - (50)(sin 16°) = (50)(a)
a = 2.84 m/s²
Yes, <span> the moon fall partly into earth's shadow when it is in its full size</span>
Electrical forces travel far through the universe