Answer:
Centre of mass is the point at which the distribution of mass is equal in all directions, and does not depend on gravitational field. Centre of gravity is the point at which the distribution of weight is equal in all directions, and does depend on gravitational field.
Explanation:
google
This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
Answer:
The final velocity of the second car is 57 m/s south.
Explanation:
This is an elastic collision between two train cars. In this case, the total kinetic energy between the two bodies will remain the same.
The formula to apply is :

where ;

Given in the question that;

Apply the formula as;

{14650*18}+{3825*11} = {14650 *6} + {3825 * v₂f}
263700+42075=87900 + 3825v₂f
305775 =87900 + 3825v₂f
305775-87900 = 3825v₂f
217875=3825v₂f
217875/3825 =v₂f
56.96 = v₂f
<u>57 m/s = v₂f { nearest whole number}</u>
Answer:
velocity = 62.89 m/s in 58 degree measured from the x-axis
Explanation:
Relevant information:
Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.
Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.
Before collision Momentum of A = 1000 x 100 =
kg - m/s in the right direction.
Before collision Momentum of B = 2000 x 80 = 1.6 x
kg - m/s in upward direction.
Mass of System of after collision = 1000 + 2000 = 3000 kg
Now applying the Momentum Conservation, we get
Initial momentum in right direction = final momentum in right direction =
And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x
So,
=
m/s
and
m/s
Therefore, velocity is = 
= 
= 62.89 m/s
And direction is
tan θ =
= 1.6
therefore, 
=
from x-axis