Answer:
Option C. Objects 1 and 3 will not move, and objects 2 and 4 will accelerate
upward.
Explanation:
The following data were obtained from the question:
OBJECT >>>>>>>>> WEIGHT (N)
1 >>>>>>>>>>>>>>>> 35
2 >>>>>>>>>>>>>>>> 23
3 >>>>>>>>>>>>>>>> 26
4 >>>>>>>>>>>>>>>> 18
Force (F) applied = 25 N
From the above, the force applied to each object is 25N. Thus the following can be concluded based on the data given above:
For object 1:
Weight = 35 N
Force applied = 25 N
Thus, the object will not move since the weight of the object is greater than the force applied
For object 2:
Weight = 23 N
Force applied = 25 N
Thus, the object will move since the force applied is greater than the weight of the object.
For object 3:
Weight = 26 N
Force applied = 25 N
Thus, the object will not move since the weight of the object is greater than the force applied.
For object 4:
Weight = 18 N
Force applied = 25 N
Thus, the object will move since the force applied is greater than the weight of the object.
From the above illustrations, Object 1 and 3 will not move, and objects 2 and 4 will accelerate i.e move
Static electricity<span> is a </span>buildup<span> of </span>electric<span> charges on objects. Charges </span>build up<span> when negative </span>electrons<span> are transferred from one object to another. The object that gives </span>up electrons<span> becomes positively charged, and the object that accepts the </span>electrons<span> becomes negatively charged. This can </span>happen<span> in several ways</span>
<span>Only eukaryotes form multicellular organisms consisting of many kinds of tissue made up of different cell types. Eukaryotes can reproduce both asexually through mitosis and sexually through meiosis and gamete fusion. In mitosis, one cell divides to produce two genetically identical cells.</span>
Answer:it should be Newton’s second law
Explanation: lmk if I’m wrong
Answer:
The answer is: True.
Explanation:
If free electrons or other substances could travel through the electrolyte, they would disrupt the chemical reaction. Whether they combine at anode or cathode, together hydrogen and oxygen form water, which drains from the cell. As long as a fuel cell is supplied with hydrogen and oxygen, it will generate electricity.
(Credit: Google)