The partial pressure of methane in the mixture of methane and ethane has been 1 atm.
Partial pressure has been the pressure exerted by a gas in the solution or mixture. The partial pressure of each gas has been the total pressure of the gaseous mixture.
The partial pressure of the gas has been dependent on the volume, temperature, and concentration of the gas.
The given methane has a partial pressure of 1 atm in the 15 L vessel. The addition of ethane results in the change in the total pressure of the mixture, as there have been additional moles of solute that contributes to the solution pressure.
However, since there has been no change in the concentration and volume of methane, the pressure exerted by methane has been the same. Thus, the partial pressure of methane has been 1 atm.
For more information about the partial pressure, refer to the link:
brainly.com/question/14623719
The answer is 6.25 x 10^4.
Answer:
if you mix any halogen with any alkali then ionic salt will be formed and also this will cause an exothermic reaction in which heat is getting released
Answer:
The change in enthalpy in the combustion of 3 moles of methane = -2406 kJ
Explanation:
<u>Step 1: </u>The balanced equation
CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) ΔH = -802 kJ
<u>Step 2:</u> Given data
We notice that for 1 mole of methane (CH4), we need 2 moles of O2 to produce : 1 mole of CO2 and 2 moles of H20.
The enthalpy change of combustion, given here as Δ
H
, tells us how much heat is either absorbed or released by the combustion of <u>one mole</u> of a substance.
In this case: we notice that the combustion of 1 mole of methane gives off (because of the negative number), 802.3 kJ of heat.
<u>Step 3: </u>calculate the enthalpy change for 3 moles
The -802 kj is the enthalpy change for 1 mole
The change in enthalpy for 3 moles = 3* -802 kJ = -2406 kJ
The change in enthalpy in the combustion of 3 moles of methane = -2406 kJ
Answer: the gravitational pull decreases as the object's distance increases
Explanation: