Answer:
Effectiveness and cold stream output temperature of the heat exchange Increases. So, Answer is b) Increases.
Explanation:
We have a heat exchanger, and it is required to compare the effectiveness and cold stream output if the length is increased.
Heat exchangers are engineering devices used to transfer energy. Thermal energy is transferred from Fluid 1 - Hot fluid (HF) to a Fluid 2 - Cold Fluid (CF). Both fluids 1 and 2 can flow with different values of mass flow rate and different specific heat. When the streams go inside the heat exchanger Temperature of Fluid 1 (HF) will decrease, at the same time Temperature of the Fluid 2 (CF) will increase.
In this case, we need to analyze the behavior taking into account different lengths of heat exchangers. If the length of the heat exchanger increases, it means the transfer area will increases. Heat transfer will increase if the transfer area increases. In this sense, the increasing length is the same than increase heat transfer.
If the heat transfer increases, it means Fluid 1 (HF) will reduce its temperature, and at the same time Fluid 2 (CF) will increase its temperature.
Finally, Answer is b) Effectiveness and cold stream output temperature increases when the length of the heat exchanger is increased.
<span>Whereas physical properties of a substance tells us about how the substance looks, smells, etc, the chemical properties of a substance basically tells us how the substance will react with other substances. Therefore, knowing the chemical property of a substance tells us how the substance reacts with others.Hope this helps. Let me know if you need additional help!</span><span />
Answer: The concentration of
ions in the resulting solution is 1.16 M.
Explanation:
To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the 
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get

The concentration of
ions in the resulting solution will be same as the molarity of solution which is 1.16 M.
Hence, the concentration of
ions in the resulting solution is 1.16 M.
The original options for this question were cleavage, luster and hardness. The answer would be cleavage.