Answer:
Explanation:
Let the radius of track required be r.
Centripetal force will be provided by frictional force which will be equal to
m v²/ r
Frictional force = mg x μ
So
m v² /r = mg μ
r = v² / μ g =
v = 29 km /h = 8.05 m /s
r =( 8.05 x 8.05 ) /( .32 x 9.8 ) = 20.66 m
Answer:

Explanation:
As we know that system of two boxes are moving on frictionless surface
So here if two boxes are considered as a system
then we have






Now since we know that both the boxes are moving together so force applied by first box on other box is given as



Answer:
4*10^-2
Explanation:
for the scientific notation the first number must be between 1 and 10, so in this case it is 4. 4/100 is also equal to 0.04, and if we could the number of places before 4, there are two, therefore 4 times 10 to the power of -2
Vertebrate is the answer I think.
Answer:
the greater the speed, the greater the electromotive force
* The metal pole must be parallel to the field
* you must keep the ball of the field
Explanation:
To determine the advice to the runners, let's use the Farad equation to and
fem = -N
= -N
how the runners are moving
fi = B l x
fem = -N B l v
therefore the advice we can give are:
* the greater the speed, the greater the electromotive force
* The metal pole must be parallel to the field
* you must keep the ball of the field