Answer:
81 J.
Explanation:
From the question given above, the following data were obtained:
Specific heat capacity (C) = 0.45 J/gK.
Temperature change (ΔT) = 15 K
Mass = 12 g
Heat required (Q) =?
The heat required to raise the temperature of iron can be obtained as illustrated below:
Q = MCΔT
Q = 12 × 0.45 × 15
Q = 81 J
Therefore, the heat required to raise the temperature of the iron is 81 J.
First change km/ s into m/s, then use the formula
Lambda = velocity/ frequency
Force is the product of mass and acceleration .
The question is ask to find acceleration.
But acceleration is the ratio of the force and the mass.
where 600kg is the mass and 7kN is the force
NB: kilo is 1000
now we have to multiply 7N by 1000
by doing so you will have 7000N
which is the force.
Now to find the acceleration: force/ mass
which is 7000/600
therefore the maximum acceleration is 11.667
Over time, the types of technology can vary and be improved upon so that more advanced techniques become more valued. This could be the situation with mining whereby back in the 1500's in underground mines the rock was broken by fire setting ie lighting a fire below the rock face to heat up the rock and then throwing cold water on it to crack it, so that it could be dug by hand. With the advent of explosives, this all changed so that the rock could be blasted. The increase in advance rates for an underground heading have thus gone from 5-20 feet per month to up to 300meters (984 ft) per month for a 24/7 mining operation, which is a huge improvement.
Answer:
Explanation:
Given that,.
A house hold power consumption is
475 KWh
Gas used is
135 thermal gas for month
Given that, 1 thermal = 29.3 KWh
Then,
135 thermal = 135 × 29.3 = 3955.5 KWh
So, total power used is
P = 475 + 3955.5
P =4430.5 KWh
Since 1 hr = 3600 seconds
So, the energy consumed for 1hr is
1KW = 1000W
P = energy / time
Energy = Power × time
E = 4430.5 KWhr × 1000W / KW × 3600s / hr
E = 1.595 × 10^10 J
So, using Albert Einstein relativity equation
E = mc²
m = E / c²
c is speed of light = 3 × 10^8 m/s
m = 1.595 × 10^10 / (3 × 10^8)²
m = 1.77 × 10^-7 kg
Then,
1 kg = 10^6 mg
m = 1.77 × 10^-7 kg × 10^6 mg / kg
m = 0.177mg
m ≈ 0.18 mg