Answer:
Read below!
Explanation:
You can watch the sun wheel across the sky during the day, and the stars at night. Focus a telescope on any star besides the north star--especially southern stars--and you can watch them drift across your field of view.
An alternative explanation is that all the stars are painted on (or holes in) some canopy that rotates around the earth. This explanation does not account for the motion of the "wanderers," or planets, as the Greeks called them, or for the path of the moon among the stars.
As we know the stars are massive bodies of significant and varying distance to the earth, the notion they all swing around us in unison seems highly implausible
Answer:0.502kg
Explanation:
F4om the relation
Power x time = mass x latent heat of vapourization
P.t=ML
1260 * 15 *60 = M * 22.6 * 10^5
M= 1134000/(22.6 *10^5)
M=0.502kg=502g
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
<span>Indeed, this is one of the odd results in physics. A system of two polarizing filters arranged as shown below trasmits no light.</span>