1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
loris [4]
3 years ago
13

How much time does it take for a plane To fly 5000 miles if the plane travels a speed of 500 miles per hour?

Physics
2 answers:
Tasya [4]3 years ago
6 0
10 hours 500 x 2 = 1000 ...so every 2 hours = 1000 x 5 = 5000
Vitek1552 [10]3 years ago
5 0

Answer:

10 hours

Explanation:

If the plane flies at 500 miles per hour, it flies 500 miles every hour. So, to find out how many hours it will take to fly 5000, you simply do 5000/500.

You might be interested in
Is there a "real" simple machine that has an efficiency of 100%?
VARVARA [1.3K]

Answer:

NO

Explanation:

No, a machine cannot be 100% efficient. This is due to the movement of the moving parts siding against each other and causing friction. This friction is the one that creates heat and causes wear and tear between moving ports f the machine hence making the machine to decrease in efficiency with time

8 0
3 years ago
If the average pitcher is releasing the ball from a height of 1.8 m above the ground, and the pitcher's mound is 0.2 m higher th
mina [271]

The catcher can catch the ball at a height of 0.96 m from the ground.

The distance between the pitcher's mound and the catcher's box is about 60'6", which translates to 18.44 m. An average pitcher can pitch with speeds ranging from 88 mph to 97 mph, which is from 39.3 m/s to 43.4 m/s.

Assume the pitcher pitches a ball horizontally with a speed of 40 m/s. If the catcher catches the ball in a time t, then the ball travels a horizontal distance x of 18.44 m and at the same time falls through a height y.

The horizontal motion of the ball is uniform motion since no force acts on the ball ( assuming no air resistance) and hence the acceleration of the ball along the horizontal direction is zero.

Therefore,

x=ut

Calculate the time t by substituting 18.44 m for x and 40 m/s for u.

t=\frac{x}{u} \\ =\frac{18.44 m}{40 m/s} \\ =0.461s

The ball is acted upon by the earth's gravitational attraction and hence it accelerates downwards with an acceleration equal to the acceleration due to gravity g.

Since a horizontal projection is assumed, the ball has no component of velocity in the downward direction.

Therefore, for vertical motion, which is an accelerated motion, the distance y, the ball falls in the time t taken by it to reach the catcher's box is given by the equation,

y=\frac{1}{2} gt^2

Substitute 9.8 m/s² for g and 0.461 s for t.

y=\frac{1}{2} gt^2\\ y=\frac{1}{2}(9.8 m/s^2)(0.461s)^2=1.04 m

The pitcher releases the ball at a height of 1.8 m from a mound which is at a height of 0.2 m. Thus, the ball is released at a height of 2.0 m from the ground. It falls through a distance of 1.04 m in the time it takes to reach the catcher.

Therefore, the height at which the catcher needs to keep his glove so as to catch the ball is given by,(2.0 m)-(1.04 m)=0.96 m

The catcher needs to hold his glove at a height of <u>0,96 m from the ground.</u>

8 0
3 years ago
Solve this physics for me <br>please with steps<br>​
Mars2501 [29]

Answer:

The answers are located in each of the explanations showed below

Explanation:

a)

(i) Surface Tension: The tensile force that causes this tension acts parallel to the surface and is due to the forces of attraction between the molecules of the liquid. The magnitude of this force per unit of length is called surface tension.

σ = F/l [N/m]

where:

F = force [N]

l = length [m]

σ = Surface Tension [N/m]

(ii) Frequency is the number of repetitions per unit of time of any periodic event.

f = 1/T [1/s] or [s^-1] or [Hz]

where:

T = period [s] or [seconds]

f = frecuency [Hz] or [hertz]

(iii) Each of the units will be shown for each variable

v = velocity [m/s]

a = accelertion [m/s^2]

s = displacement [m]

[\frac{m}{s} ]^{2} =[\frac{m}{s} ]^{2} + 2* [\frac{m}{s^{2} } ]*[m]\\

[\frac{m^2}{s^2} ] =[\frac{m^2}{s^2} ] +  [\frac{m^{2} }{s^{2} } ]

[\frac{m^2}{s^2} ]

b) To find the velocity we must derivate the function X with respect to t because this derivate will give us the equation for the velocity, it means:

v=\frac{dx}{dt} \\v = 0.75*2*t+5*t

(i) X = 0.75*t^{2} +5*t+1\\X = 0.75*(4)^{2} +5*(4)+1\\X = 33 [m]

ii) replacing in the derivated equation.

v=1.5*(4)+5\\v=11[m/s]

iii) the average velocity is defined by the expresion v = x/t

v = \frac{x-x_{0} }{t-t_{0} } \\

x_{0}=0.75(2)^{2}+5(2)+1 \\ x_{0}=14[m]\\x=0.75(7)^{2}+5(7)+1\\x=72.75[m]\\t = 7 [s]t0= 2[s]Now replacing:[tex]v_{prom} = \frac{72.75-14}{7-2} \\v_{prom} = 11.75 [m/s]

2

a) Pascal's principle or Pascal's law, where the pressure exerted on an incompressible fluid and in balance within a container of indeformable walls is transmitted with equal intensity in all directions and at all points of the fluid.

Therefore:

P1 = pressure at point 1.

P2 = pressure at point 2.

P1 = F1/A1

P2= F2/A2

\frac{F_{1} }{A_{1} }=\frac{F_{2}}{A_{2} }  \\F_{1}=A_{1}*(\frac{F_{2}}{A_{2} })

b) One of the applications of the surface tension is the <u>capillarity</u> this is a property of liquids that depends on their surface tension (which, in turn, depends on the cohesion or intermolecular force of the liquid), which gives them the ability to climb or descend through a capillary tube.

Other examples of surface tension:

The mosquitoes that can sit on the water.

A clip on the water.

Some leaves that remain floating on the surface.

Some soaps and detergents on the water.

5 0
3 years ago
Four blocks of weights are required using which any body whose weight is between 1kg and 40 kg can be weighed. Find the four wei
Vikentia [17]

Answer:

The weights are 1 kg, 3kg, 9kg and 27kg.

Explanation:

The weights are 1 kg, 3kg, 9kg and 27kg.

1+3+9+27= 40

27+9+3= 39

27+9+3-1=38

27+9+1=37

27+9=36

27+9-1=35

27+9+1-3=34

27+9-3=33

27+9-3-1=32

27+3+1=31

27+3=30

27+3-1=29

27+1=28

27

27-1=26

27+1-3=25

27-3=24

27-3-1=23

27+3+1-9=22

27+3-9=21

27+3-9-1=20

Like this all the weights from 1 to 40 kg can be made using 1,3,9 and 27 kg.

6 0
3 years ago
Brandon has a Nissan GTR. He drives 198.5 miles in 2.3 hours. What is his average speed?
gulaghasi [49]
86.3 I just did the math and that’s the answer I got
8 0
3 years ago
Read 2 more answers
Other questions:
  • Clear cutting has a similar effect as controlled burning of a forest. <br><br> True<br><br> False
    6·2 answers
  • If two identical cars are traveling at different velocities, which car has the greatest momentum ​
    9·1 answer
  • Which techniques can help reduce the effects of tornadoes?
    13·1 answer
  • Earth’s axis slowly but continuously points in different directions. True or False
    8·1 answer
  • How long does water evaporation take? What factors influence it?
    14·2 answers
  • Law of conservation<br> of momentum
    9·1 answer
  • (WIFI)
    14·1 answer
  • A wave oscillates 50 times per second. What is its frequency?
    9·2 answers
  • A 100-turn coil has a radius of 7.50 cm and a resistance of 50.0 W. At what rate must a perpendicular magnetic field change to p
    10·1 answer
  • Please help me with this,
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!