Answer:
The best estimate of the depth of the well is 2.3 sec.
Explanation:
Given that,
Record time,





We need to find the best estimate of the depth of the well
According to record time,
We can write of the record time





Here, all time is nearest 2.3 sec.
So, we can say that the best estimate of the depth of the well is 2.3 sec.
Hence, The best estimate of the depth of the well is 2.3 sec.
Answer:
1) Magnetic resonance imaging (MRI) is a test that uses powerful magnets, radio waves, and a computer to make detailed pictures of the inside of your body.
Your doctor can use this test to diagnose you or to see how well you've responded to treatment. Unlike X-rays and computed tomography (CT) scans, MRIs don’t use the damaging ionizing radiation of X-rays.
2) MRIs employ powerful magnets which produce a strong magnetic field that forces protons in the body to align with that field. When a radiofrequency current is then pulsed through the patient, the protons are stimulated, and spin out of equilibrium, straining against the pull of the magnetic field.
3) Magnetic resonance imaging (MRI) uses a large magnet and radio waves to look at organs and structures inside your body. Health care professionals use MRI scans to diagnose a variety of conditions, from torn ligaments to tumors. MRIs are very useful for examining the brain and spinal cord.
4) The magnetic fields that change with time create loud knocking noises which may harm hearing if adequate ear protection is not used. They may also cause peripheral muscle or nerve stimulation that may feel like a twitching sensation. The radiofrequency energy used during the MRI scan could lead to heating of the body.
pls mark brainliest
Answer:
D ko alam pasensya ka na ha
Thw question is not complete. The complete question is;
Charge of uniform linear density (6.7 nCim) is distributed along the entire x axis. Determine the magnitude of the electric field on the y axis at y = 1.6 m. a. 32 N/C b. 150 NC c 75 N/C d. 49 N/C e. 63 NC
Answer:
Option C: E = 75 N/C
Explanation:
We are given;
Uniform linear density; λ = 6.7 nC/m = 6.7 × 10^(-9) C/m
Distance on the y-axis; d = 1.6 m
Now, the formula for electric field with uniform linear density is given as;
E = λ/(2•π•r•ε_o)
Where;
E is electric field
λ is uniform linear density = 6.7 × 10^(-9) C/m
r is distance = 1.6m
ε_o is a constant = 8.85 × 10^(-12) C²/N.m²
Thus;
E = (6.7 × 10^(-9))/(2π × 1.6 × 8.85 × 10^(-12))
E = 75.31 N/C ≈ 75 N/C