Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
Answer:
C: Variation in the value of g as the pendulum bob moves along its arc.
Explanation:
The formula for period of a simple pendulum is given by;
T = 2π√(L/g)
Where;
L is length
g is acceleration due to gravity
Now, from this period equation, it is clear that the only thing that can affect the period of a simple pendulum are changes to its length and acceleration due to gravity.
Looking at the options, the only one that talks about either the length or gravity as being potential causes of the error is option C
Answer:

Explanation:
given,
mean (μ) = 12.3 Kg
standard deviation (σ ) = 0.1
random sample = 25
probability between 12.25 and 12.35 kg





using z-table


The car's acceleration will be 0.575 m/s².The unit of acceleration is m/sec².
<h3>What is acceleration?</h3>
The rate of velocity change concerning time is known as acceleration.
Given data;
Initial velocity, u= 0 m/s
Final velocity, v= 4.2 m/s
Time elapsed, t = 7.3 seconds.
To find ;
Acceleration, a
The acceleration when the change in velocity is observed by the formula as:
a= (v-u)/(t)
Substitute the given values:
a= (4.2-0)/(7.3)
a=(4.2)/(7.3)
a= 0.575 m/s²
Hence, the car's acceleration will be 0.575 m/s².
To learn more about acceleration, refer to the link brainly.com/question/2437624
#SPJ1
A law has always been observed to be true