The answer is C in this question.
Given:
m(mass of the box)=10 Kg
t(time of impact)=4 sec
u(initial velocity)=0.(as the body is initially at rest).
v(final velocity)=25m/s
Now we know that
v=u+at
Where v is the final velocity
u is the initial velocity
a is the acceleration acting on the body
t is the time of impact
Substituting these values we get
25=0+a x 4
4a=25
a=6.25m/s^2
Now we also know that
F=mxa
F=10 x6.25
F=62.5N
Answer:
52 rad
Explanation:
Using
Ф = ω't +1/2αt²................... Equation 1
Where Ф = angular displacement of the object, t = time, ω' = initial angular velocity, α = angular acceleration.
Since the object states from rest, ω' = 0 rad/s.
Therefore,
Ф = 1/2αt²................ Equation 2
make α the subject of the equation
α = 2Ф/t².................. Equation 3
Given: Ф = 13 rad, t = 2.5 s
Substitute into equation 3
α = 2(13)/2.5²
α = 26/2.5
α = 4.16 rad/s².
using equation 2,
Ф = 1/2αt²
Given: t = 5 s, α = 4.16 rad/s²
Substitute into equation 2
Ф = 1/2(4.16)(5²)
Ф = 52 rad.
Explanation:
It is given that,
Mass of a bungee jumper is 65 kg
The time period of the oscillation is 38 s, hitting a low point eight more times.It means its time period is

After many oscillations, he finally comes to rest 25.0 m below the level of the bridge.
For an oscillating object, the time period is given by :

k = spring stiffness constant
So,

When the cord is in air,
mg=kx
x = the extension in the cord

So, the unstretched length of the bungee cord is equal to 25 m - 5.6 m = 19.4 m