Answer:
Scenario A, B and E is True.
Explanation:
Scenario A) True. Removing carbon dioxide from atmosphere decreases greenhouse effect of atmosphere. Thus, temperature rise decreases.
Scenario B) True. The more evaporation creates the more greenhouse effect. Therefore, temperature rise increases.
Scenario C) False. Removing carbon dioxide from atmosphere decreases greenhouse effect of atmosphere. Thus, temperature rise decreases.
Scenario D) False. The more evaporation creates the more greenhouse effect. Therefore, temperature rise increases.
Scenario E) True. If reflected radiation increases from Earth, temperature rise of the Earth will decrease. Ice cover increases reflectivity which leads temperature level decrease.
Scenario F) False. If reflected radiation increases from Earth, temperature rise of the Earth will decrease. Ice cover increases reflectivity which leads temperature level decrease.
Answer:
2. You must be able to precisely measure variations in the star's brightness with time.
5. As seen from Earth, the planet's orbit must be seen nearly edge–on (in the plane of our line-of-sight).
6. You must repeatedly obtain spectra of the star that the planet orbits.
Explanation:
The transit method is a very important and effective tool for discovering new exoplanets (the planets orbiting other stars out of the solar system). In this method the stars are observed for a long duration. When the exoplanet will cross in front of theses stars as seen from Earth, the brightness of the star will dip. To observe this dip following conditions must be met:
1. The orbit of the planet should be co-planar with the plane of our line of sight. Then only its transition can be observed.
2. The brightness of the star must be observed precisely as the period of transit can be less than a second as seen from Earth. Also the dip in brightness depends on the size of the planet. If the planet is not that big the intensity dip will be very less.
3. The spectrum of the star needs to be studied and observe during the transit and normally to find out the details about the planets.
4. Also, the orbital period should be less than the period of observation for the transit to occur at least once.
You need 5 blocks of the smaller object to contain the same amount of volume of the bigger object