The tension on the wire is 52.02 N.
From the question, we have
Density of aluminum = 2700 kg/m3
Area,
A = πd²/4
A = π x (4.6 x 10⁻³)²/4
A = 1.66 x 10⁻⁵ m²
μ = Mass per unit length of the wire
μ = ρA
μ = 2700 kg/m³ x 1.66 x 10⁻⁵ m²
μ = 0.045 kg/m
Tension on the wire = √T/μ
34 = √T/0.045
34² = T/0.045
T = 52.02 N
The tension on the wire is 52.02 N.
Complete question:
The density of aluminum is 2700 kg/m3. If transverse waves propagate at 34 m/s in a 4.6-mm diameter aluminum wire, what is the tension on the wire.
To learn more about tension visit: brainly.com/question/14336853
#SPJ4
Answer:
Yes. Inertia keeps the speed maintained though my feet leave the ground.
Explanation:
Inertia is the resistance to the change in position of any object this means this resistance will keep me traveling at 30 km/s relative to the sun. If the person wants to change the position we apply force to do that because inertia is opposing us to not do that. We are always traveling with 30km/s relative to sun due to inertia.
Answer:
<h3>The answer is 8.91 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>8.91 m/s²</h3>
Hope this helps you
Answer:
45930.52N
Explanation:
Net force = (internal pressure - external pressure)× area of window
Net force = (1.02 - 0.910)atm × 2.03m × 2.03m = 0.11atm × 4.1209m^2 = 0.11 × 101325N/m^2 × 4.1209m^2 = 45930.52N
Answer:
4 x 10⁻⁴ J
Explanation:
C = 5000 pF, V = 400 V
Energy = CV²/2 = 5000 x 10⁻¹² x 400²/2 = 4 x 10⁻⁴ J