Answer:
It has 4 valence electrons
The given question is incomplete. the complete question is:
The world burns the fossil fuel equivalent of approximately
kg of petroleum per year. Assume that all of this petroleum is in the form of octane. Calculate how much CO2 in kilograms is produced by world fossil fuel combustion per year.( Hint: Begin by writing a balanced equation for the combustion of octane.)
Answer: 
Explanation:
Combustion is a chemical reaction in which hydrocarbons are burnt in the presence of oxygen to give carbon dioxide and water.
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

To calculate the moles :

According to stoichiometry :
As 2 moles of octane give = 16 moles of 
Thus
of octane give =
of 
Mass of 
Thus
of
is produced by world fossil fuel combustion per year.
Answer:
Final temperature = T₂ = 155.43 °C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of coin = 4.50 g
Heat absorbed = 54 cal
Initial temperature = 25 °C
Specific heat of copper = 0.092 cal/g °C
Final temperature = ?
Solution:
Q = m.c. ΔT
ΔT = T₂ -T₁
Q = m.c. T₂ -T₁
54 cal = 4.50 g × 0.092 cal/g °C × T₂ -25 °C
54 cal = 0.414 cal/ °C × T₂ -25 °C
54 cal /0.414 cal/ °C = T₂ -25 °C
130.43 °C = T₂ -25 °C
130.43 °C + 25 °C = T₂
155.43 °C = T₂
More than one type of metallic elements.
The balanced equation for the reaction between NaOH and aspirin is as follows;
NaOH + C₉H₈O₄ --> C₉H₇O₄Na + H₂O
stoichiometry of NaOH to C₉H₈O₄ is 1:1
The number of NaOH moles reacted - 0.1002 M / 1000 mL/L x 10.00 mL
Number of NaOH moles - 0.001002 mol
Therefore number of moles of aspirin - 0.001002 mol
Mass of aspirin reacted - 0.001002 mol x 180.2 g/mol = 0.18 g
However the mass of the aspirin sample is 0.132 g but 0.18 g of aspirin has reacted, therefore this question is not correct.