1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
3 years ago
10

A rocket is launched straight up from the earth's surface at a speed of 1.80×104 m/s .part awhat is its speed when it is very fa

r away from the earth?
Physics
2 answers:
Neko [114]3 years ago
5 0

The speed of the rocket when it is very far away from the Earth is  \boxed{1.61 \times {{10}^4}\,{{\text{m}}\mathord{\left/{\vphantom{{\text{m}}{\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Since the gravitational potential energy of the rocket will become when the rocket reaches a distance far away from the Earth, the complete kinetic and gravitational potential energy of the rocket on the surface of Earth is converted into the kinetic energy of the rocket.

The total energy of the rocket on the surface of the Earth is:

T{E_i} = {K_i} + {U_i}

Here,  is the kinetic energy of the rocket and {U_i} is the gravitational potential energy of the rocket.  

The kinetic energy of the rocket when it starts from the surface of Earth is:

{K_i} =\dfrac{1}{2}mv_i^2

The total gravitational potential energy of the rocket when it was on the surface of the Earth is:

{U_i}= - \dfrac{{GMm}}{r}

Here, m is the mass of the rocket and M is the mass of the Earth.

The final energy of the rocket will be in the form of the kinetic energy only. The final energy of the rocket will be:

{K_f} =\dfrac{1}{2}mv_f^2

Now, using the conservation of energy for the rocket:

\begin{aligned}T{E_i} &= T{E_f} \hfill\\{K_i} + {U_i} &= {K_f}\hfill\\\frac{1}{2}mv_i^2- \frac{{GMm}}{r}&= \frac{1}{2}mv_f^2 \hfill\\\end{aligned}

Rearrange the above expression for final velocity and substitute the values.

\begin{aligned}{v_f}&= \sqrt {v_i^2 - \frac{{GM}}{r}}\\&= \sqrt {{{\left( {1.80 \times {{10}^4}} \right)}^2} - \frac{{\left( {6.67 \times {{10}^{11}}} \right)\left( {5.97 \times {{10}^{24}}}\right)}}{{6.37 \times {{10}^6}}}}\\&= \sqrt {\left( {3.24 \times {{10}^8}} \right) - \left( {6.25 \times {{10}^7}} \right)}  \\&= 1.61 \times {10^4}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}}\right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

Thus, the speed of the rocket when it is very far away from the Earth is  \boxed{1.61 \times {{10}^4}\,{{\text{m}}\mathord{\left/ {\vphantom{{\text{m}}{\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}}

Learn More:

1. Choose the 200 kg refrigerator. Set the applied force to 400 N brainly.com/question/4033012

2. How far must you compress a spring with twice the spring constant to store the same amount of energy brainly.com/question/2114706

3. Calculate the total force on the earth due to Venus, Jupiter, and Saturn brainly.com/question/2887352

Answer Details:

Grade: College

Subject: Physics

Chapter: Gravitation

Keywords:  Rocket, gravitational potential energy, kinetic energy, very far away, Earth, launched straight up, speed of rocket, initial energy, 1.80x10^4 m/s.

balandron [24]3 years ago
3 0
We can solve the problem by using the law of conservation of energy.

When the rocket starts its motion from the Earth surface, its mechanical energy is sum of kinetic energy and gravitational potential energy:
E_i = K_i + U_i =  \frac{1}{2} m v_i^2 + (- \frac{GM}{r} )
where
m is the rocket's mass
v_i = 1.8 \cdot 10^4 m/s is the rocket initial speed
G=6.67 \cdot 10^{-11} m^3 kg^{-1} s^{-2} is the gravitational constant
M=5.97 \cdot 10^{24} kg is the Earth's mass
r= 6.37 \cdot 10^6 m is the distance of the rocket from the Earth's center (so, it corresponds to the Earth's radius)

The mechanical energy of the rocket when it is very far from the Earth is just kinetic energy (because the gravitational potential at infinite distance from Earth is taken to be zero):
E_f = K_f =  \frac{1}{2} mv_f ^2
where v_f is the final speed of the rocket.

By equalizing the initial energy and the final energy, we can find the final velocity:
\frac{1}{2} mv_i ^2 -  \frac{GM}{r} = \frac{1}{2}m v_f^2
v_f =  \sqrt{v_i^2 -  \frac{GM}{r} } =1.41 \cdot 10^4 m/s
You might be interested in
A proton is accelerated from rest through a potential difference V0 and gains a speed v0. If it were accelerated instead through
Neporo4naja [7]

Answer:

Explanation:

Let the charge on proton be q .

energy gain by proton in a field having potential difference of V₀

= V₀ q

Due to gain of energy , its kinetic energy becomes 1/2 m v₀²

where m is mass and v₀ is velocity of proton

V₀ q = 1/2 m v₀²

In the second case , gain of energy in electrical field

= 2 V₀q , if v be the velocity gained in the second case

2 V₀q = 1/2 m v²

1/2 m v² = 2 V₀q = 2 x 1/2 m v₀²

mv² = 2  m v₀²

v = √2 v₀

6 0
2 years ago
Which does not contain a lens?
denis23 [38]
Im pretty sure it’s A eye
8 0
3 years ago
Help me please. I’ll select brainliest!
pishuonlain [190]

Answer:

90 degrees

Explanation:

the answer is 90 because angle a has a square on the angle which means it is 90 degrees

8 0
3 years ago
Read 2 more answers
how does the number of chromosomes in a persons sex compare with the number of chromosome in the body cell
koban [17]

no it doesn't why because I think that it is not the same but different.

4 0
2 years ago
Can anyone check if my answer is correct ?
ohaa [14]

I believe your answer is correct, because 8.7*10^-7 is equal to 0.00000085347.

Hope you do well!

4 0
2 years ago
Other questions:
  • What is the wavelength of an earthquake wave if it has a speed of 12 km/s and a frequency of 15 Hz
    7·1 answer
  • A satellites are placed in a circular orbit that is 2.44 × 107 m above the surface of the earth. What is the magnitude of the ac
    12·1 answer
  • A car traveling at a constant velocity goes a distance of 198 kilometers in 2.2 hours. What is the velocity of the car?
    7·1 answer
  • The weight of an ice sheet can cause continental lithosphere to sink into the underlying asthenosphere due to ____.
    11·1 answer
  • When the 3.0 kg cylinder fell 500 m, the final temperature of the water was °C and the change in temperature was °C.
    8·2 answers
  • How are rainbows formed? Please explain.
    13·2 answers
  • Why is the speed of the earths plate measured in centimeter per year instead of in meter per second?
    6·1 answer
  • Which of the following statements about the force on a charged particle due to a magnetic field are not valid?
    10·1 answer
  • 6. Compare Which of the
    6·1 answer
  • What is the change in entropy of 0.130 kg of helium gas at the normal boiling point of helium when it all condenses isothermally
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!