HEJEGEJDHIEBDJDHDIDGDJGJDHD
Answer:
3.75 m/s
Explanation:
From the question given above, the following data were obtained:
Acceleration (a) = 1.5 m/s²
Initial velocity (u) = 0 m/s
Time (t) = 2.5 s
Final velocity (v) =?
a = (v – u) / t
1.5 = (v – 0) / 2.5
1.5 = v / 2.5
Cross multiply
v = 1.5 × 2.5
v = 3.75 m/s
Hence, the escape velocity of the squirrel is 3.75 m/s
Answer:
The speed with which the man flies forward is 5.5 m/s
Explanation:
The mass of the man = 100 kg
The mass of the scooter = 10 kg
The speed with which the man was traveling on the scooter = 5 m/s
The speed of the scooter after it hits the rock = 0 m/s
Let v represent the speed with which the man flies forward
The formula for momentum, P, is P = Mass × Velocity
The conservation of linear momentum principle is, the total initial momentum = The total final momentum, therefore, we have;
The total initial momentum = (100 kg + 10 kg) × 5 m/s = 550 kg·m/s
The total final momentum = 100 kg × v + 10 kg × 0 m/s = 100 kg × v
When the momentum is conserved, we have;
550 kg·m/s = 100 kg × v
∴ v = 550 kg·m/s/(100 kg) = 5.5 m/s.
The speed with which the man flies forward = v = 5.5 m/s
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 