Answer:
B probably
Explanation:
Because the prompt doesn't specify what sort of violation it could be anything maybe when they release the metals during the day and so on.
This is about method of taking inside measurement with a tape.
<u><em>Option A is the correct answer.</em></u>
- Inside measurement is usually taken with the aid of an inside micrometer. This will give us an exact measurement. This is because when making use of an inside micrometer for inside measurement, the total length of the inside micrometer is equal to the overall length of whatever is being measured.
- We have seen how the inside micrometer is used whereby the entire body is also included in whatever is being measured. Applying this same concept to using a tape, we can simply say that we will add the tape length to the measuring case to get the inside measurement.
- From the definitions and comparisons above, we can see that we will have to add the length of the tape measure case when taking inside measurements and other options aside Option A are not correct.
Read more at; brainly.com/question/12709703
Given :
Capacitor , C = 55 μF .
Energy is given by :
.
To Find :
The current through the capacitor.
Solution :
Energy in capacitor is given by :

Now , current i is given by :
![i=C\dfrac{dv}{dt}\\\\i=C\dfrac{d[603.02cos(337t)]}{dt}\\\\i=-55\times 10^{-6}\times 603.03\times 337\times sin(337t)\\\\i=-11.18\ sin(337t)](https://tex.z-dn.net/?f=i%3DC%5Cdfrac%7Bdv%7D%7Bdt%7D%5C%5C%5C%5Ci%3DC%5Cdfrac%7Bd%5B603.02cos%28337t%29%5D%7D%7Bdt%7D%5C%5C%5C%5Ci%3D-55%5Ctimes%2010%5E%7B-6%7D%5Ctimes%20603.03%5Ctimes%20337%5Ctimes%20sin%28337t%29%5C%5C%5C%5Ci%3D-11.18%5C%20sin%28337t%29)
( differentiation of cos x is - sin x )
Therefore , the current through the capacitor is -11.18 sin ( 377t).
Hence , this is the required solution .
Answer:
184.6 BTU
Explanation:
The thermal efficiency for a Carnot cycle follows this equation:
η = 1 - T2/T1
Where
η: thermal efficiency
T1: temperature of the heat source
T2: temperature of the heat sink
These temperatures must be in absolute scale:
1000 F = 1460 R
50 F = 510 R
Then
η = 1 - 510/1460 = 0.65
We also know that for any heat engine:
η = L / Q1
Where
L: useful work
Q1: heat taken from the source
Rearranging:
Q1 = L / η
Q1 = 120 / 0.65 = 184.6 BTU
Answer:
The Young's Modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The Young's Modulus (or Elastic Modulus) is in essence the stiffness of a material. In other words, it is how easily it is bended or stretched.
Explanation:
Have a great day