Sound energy is produced when an object vibrates so an example would be a telephone ringing or someone playing a bass guitar
The correct option that can be deduced for both Object P and Q is Option b) I and II only
To solve this question correctly, we need to understand the concept of density and it relation to mass and volume.
<h3>What is Density?</h3>
Density is a physical property of an object and can be expressed by using the relation:

From the given parameters, we are being told that:
This implies that Q has a greater density that P. Since Q has a greater density than P, Q will be heavier since it will have greater mass.
However, Q will not be denser than water because if that happens, P will be have a greater density which is untrue in this scenario.
Therefore, we can conclude that:
- 1. Q is heavier than P
- II. 1cm³ of Q has a greater mass than 1cm³ of P
Learn more about density here:
brainly.com/question/6838128
<span> One </span>volt<span> is </span>defined<span> as the difference in electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points.</span>
Answer:
ee that the lens with the shortest focal length has a smaller object
Explanation:
For this exercise we use the constructor equation or Gaussian equation
where f is the focal length, p and q are the distance to the object and the image respectively.
Magnification a lens system is
m =
= -
h ’= -\frac{h q}{p}
In the exercise give the value of the height of the object h = 0.50cm and the position of the object p =∞
Let's calculate the distance to the image for each lens
f = 6.0 cm

as they indicate that the light fills the entire lens, this indicates that the object is at infinity, remember that the light of the laser rays is almost parallel, therefore p = inf
q = f = 6.0 cm
for the lens of f = 12.0 cm q = 12.0 cn
to find the size of the image we use
h ’= h q / p
where p has a high value and is the same for all systems
h ’= h / p q
Thus
f = 6 cm h ’= fo 6 cm
f = 12 cm h ’= fo 12 cm
therefore we see that the lens with the shortest focal length has a smaller object
Answer:
I do not know the answer because not all of the information is there.
Explanation: