Ok, assuming "mj" in the question is Megajoules MJ) you need a total amount of rotational kinetic energy in the fly wheel at the beginning of the trip that equals
(2.4e6 J/km)x(300 km)=7.2e8 J
The expression for rotational kinetic energy is
E = (1/2)Iω²
where I is the moment of inertia of the fly wheel and ω is the angular velocity.
So this comes down to finding the value of I that gives the required energy. We know the mass is 101kg. The formula for a solid cylinder's moment of inertia is
I = (1/2)mR²
We want (1/2)Iω² = 7.2e8 J and we know ω is limited to 470 revs/sec. However, ω must be in radians per second so multiply it by 2π to get
ω = 2953.1 rad/s
Now let's use this to solve the energy equation, E = (1/2)Iω², for I:
I = 2(7.2e8 J)/(2953.1 rad/s)² = 165.12 kg·m²
Now find the radius R,
165.12 kg·m² = (1/2)(101)R²,
√(2·165/101) = 1.807m
R = 1.807m
Current would increase <span>proportionally to voltage. </span><span> Power dissipation (heating) would increase with the square of the voltage. And resistance means, "</span><span>the refusal to accept or comply with something"</span>
Answer:
the correct answer is c, they will accelerate away from each other at different speeds. the 80kg will go faster due to less mass
Answer:
Muscular endurance is the most important factor in performing the activities of daily living.