Answer:
hope this helps!
Explanation:
Volume of the air bubble, V1=1.0cm3=1.0×10−6m3
Bubble rises to height, d=40m
Temperature at a depth of 40 m, T1=12oC=285K
Temperature at the surface of the lake, T2=35oC=308K
The pressure on the surface of the lake: P2=1atm=1×1.103×105Pa
The pressure at the depth of 40 m: P1=1atm+dρg
Where,
ρ is the density of water =103kg/m3
g is the acceleration due to gravity =9.8m/s2
∴P1=1.103×105+40×103×9.8=493300Pa
We have T1P1V1=T2P2V2
Where, V2 is the volume of the air bubble when it reaches the surface.
V2=
Answer:
m₁ = 0.37 kg
Explanation:
According to Law of conservation of energy:
Heat Lost by Aluminum = Heat Gained by Water
m₁C₁ΔT₁ = m₂C₂ΔT₂
where,
m₁ = mass of piece of aluminum = ?
C₁ = specific heat capacity of aluminum = 900 J/kg.°C
ΔT₁ = Change in temperature of aluminum = 250°C - 22°C = 228°C
m₂ = mass of water = 9 kg
C₂ = specific heat capacity of water = 4200 J/kg.°C
ΔT₁ = Change in temperature of aluminum = 22°C - 20°C = 2°C
Therefore,
m₁(900 J/kg.°C)(228 °C) = (9 kg)(4200 J/kg.°C)(2°C)
m₁ = (75600 J)/(205200 J/kg)
<u>m₁ = 0.37 kg</u>
Answer:
One might think of a plucked guitar string - the sound would depend on the original amplitude of the disturbance -
Speed and velocity would still be the same
(b) is correct because the energy transfer depends on the original energy applied.
The <u>frequency</u> of emitted light is directly proportional to the energy between the two orbits and this determines the color of the light.
<h3>What is light?</h3>
Light can be defined as a form of electromagnetic waves that does not require any medium for its propagation. This ultimately implies that, light is a form of wave that is generally referred to as a visual signal because it can be seen with the eyes.
According to the model of light wave, the <u>frequency</u> of emitted light is directly proportional to the energy between the two orbits and this determines the color of the light.
<em>In conlcusion, the </em><u><em>frequency</em></u><em> of emitted </em><em>light</em><em> is highly dependent on the </em><em>energy</em><em> between the two (2) </em><em>orbits</em><em>.</em>
Read more on energy here: brainly.com/question/1242059
Answer:
24,000 m
Explanation:
First find the rocket's final position and velocity during the first phase in the y direction.
Given:
v₀ = 75 sin 53° m/s
t = 25 s
a = 25 sin 53° m/s²
Find: Δy and v
Δy = v₀ t + ½ at²
Δy = (75 sin 53° m/s) (25 s) + ½ (25 sin 53° m/s²) (25 s)²
Δy = 7736.8 m
v = at + v₀
v = (25 sin 53° m/s²) (25 s) + (75 sin 53° m/s)
v = 559.0 m/s
Next, find the final position of the rocket during the second phase (as a projectile).
Given:
v₀ = 559.0 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (559.0 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 15945.5 m
The total displacement is:
7736.8 m + 15945.5 m
23682.2 m
Rounded to two significant figures, the maximum altitude reached is 24,000 m.