Answer:
I = 2.18 10⁻⁴ W / m²
Explanation:
The two-slit interference pattern is described by the expression for constructive interference.
d sin θ = m λ
If we also want to know the distribution of intensities we must perform the su of the electric field of the two waves, and find the intensity as the square of the velvet field, obtaining the expression
I = I_max cos² ((π d /λ
L) y)
where d is the separation of the slits, λ the wavelength, L the distance to the screen e and the separation of the interference line with respect to the central maximum
let's reduce the magnitudes to the SI system
λ = 583 nm = 583 10⁻⁹ m
L = 75.0 cm = 75.0 10⁻² m
d = 0.640 mm = 0.640 10⁻³ m
y = 0.900 mm = 0.900 10⁻³ m
let's calculate the intensity of this line
I = 5 10⁻⁴ cos² ((π 0.640 10⁻³ /583 10⁻⁹ 0.75 10⁻²) 0.900 10⁻³)
I = 5 10⁻⁴ cos2 (413.84)
I = 5 10⁻⁴ 0.435
I = 2.18 10⁻⁴ W / m²
Answer:
false
Explanation:
A vector quantity is the magnitude of a given quantity? True Or False
Answer:
168 m^2, 380 m^2
Explanation:
length of the room, l = 9.72 m
width of the room, b = 17.30 m
Area of teh rectangle is given by
A = length x width
So, A = 9.72 x 17.30 = 168.156 m^2
the significant digits should be 3 in the final answer
So, A = 168 m^2
Now length = 72 m
width = 17.39 feet = 5.3 m
Area, A = 72 x 5.3 = 381.6 m^2
There should be two significant digits in the answer so, by rounding off
A = 380 m^2
Answer:
Explanation:
Two straight wires
Have current in opposite direction
i1=i2=i=2Amps
Distance between two wires
r=5mm=0.005m
Length of one wire is ∞
Length of second wire is 0.3m
Force between the wire,
The force between two parallel currents I1 and I2, separated by a distance r, has a magnitude per unit length given by
F/l = μoi1i2/2πr
F/l=μoi²/2πr
μo=4π×10^-7 H/m
The force is attractive if the currents are in the same direction, repulsive if they are in opposite directions.
F/l = μoi1i2/2πr
F/0.3=4π×10^-7×2²/2π•0.005
F/0.3=1.6×10^-4
Cross multiply
F=1.6×10^-4×0.3
F=4.8×10^-5N