Answer:
The inner planets are closer to the Sun and are smaller and rockier. The outer planets are further away, larger and made up mostly of gas. The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus , Earth and Mars.
Explanation:
Answer:
568.18 N
Explanation:
From the question,
The formula for gravitational potential is given as
Ep = mgh........................ Equation 1
Where Ep = Gravitational potential, m = mass of the diver,h = Height.
But,
W = mg.................... Equation 2
Where W = weight of the diver.
Substitute equation 2 into equation 1
Ep = Wh
Make W the subject of the equation
W = Ep/h................... Equation 3
Given: Ep = 25000 J, h = 44 m
Substitute into equation 3
W = 25000/44
W = 568.18 N.
Hence the weight of the diver = 568.18 N
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m