Answer:
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater ...
Hi, thank you for posting your question here at Brainly.
Newton's second law of motion can be expressed as Fnet = ma. The next external for acting on, say for example, a moving car are the following:
*weight due to gravity (force down)
*friction force between he road and the car's tires (force opposite the car's direction)
Answer:
13.1 m/s
Explanation:
Given that a baseball is tossed up into the air at an initial velocity 18 m/s. The height of the baseball at time t in seconds is given by h(t) = 18t−4.9t 2 (in meters).
a) What is the average velocity for [1,1.5]?
To calculate the velocity travelled by the ball, differentiate the function.
dh/dt = 18 - 9.8t
Substitute t for 1 in the above Differential function
dh/dt = 18 - 9.8 (1)
But dh/dt = velocity
V = 18 - 9.8
V = 8.2 m/s
Average velocity = ( U + V ) / 2
Average velocity = (18 + 8.2)/2
Average velocity = 26.2/2
Average velocity = 13.1 m/s
Answer:
T=273+25=298 K
n= m/M = 10/ 4 = 2.5
R=0.08206 L.atm /mol/k
760mmHg = 1 atm therefore
600mmHg = X atm
760 X = 600mmHg
X = 600/760 = 0.789 atm
P = 0.789 atm
V= ?
PV= nRT
0.789 V = 2.5 × 0.08206 × 298
V= 2.5 × 0.08206 ×298 / 0.789
V= 77.48 L
I hope I helped you ^_^
Utilizing Lorentz factor;
Lorentz factor = Sqrt (1-u^2/c^2), where u = initial velocity, c = speed of light
But, u/c = 0.960
Therefore,
Lorentz factor = Sqrt (1-0.960^2) = 0.28
For an observer,
t = (Distance to the star*Lorentz factor)/ (u/c) = (14.4*0.28)/0.96 = 4.2 years