The correct answer to the question is : D) Be moving at a constant velocity.
EXPLANATION:
As per Newton's first laws of motion, every body continues to be at state of rest or of uniform motion in a straight line unless and until it is compelled by some external unbalanced forces acting on it.
Hence, it is the unbalanced force which changes the state of rest or motion of a body. Balanced force is responsible for keeping the body to be either in static equilibrium or in dynamic equilibrium.
As per the options given in the question, the last one is true for an object under balanced forces.
Answer:
The column number tells us the amount of valence electron the element has
A
Excitation to a higher energy state requires energy which is absorbed from the electromagnetic waves applied.
Answer:
(a) The spring constant is 59.23 N/m
(b) The total energy involved in the motion is 0.06 J
Explanation:
Given;
mass, m = 240 g = 0.24 kg
frequency, f = 2.5 Hz
amplitude of the oscillation, A = 4.5 cm = 0.045 m
The angular speed is calculated as;
ω = 2πf
ω = 2 x π x 2.5
ω = 15.71 rad/s
(a) The spring constant is calculated as;

(b) The total energy involved in the motion;
E = ¹/₂kA²
E = (0.5) x (59.23) x (0.045)²
E = 0.06 J
Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s