The correct answer is (a.) a parsec. A parsec is a distance an object would be from Earth if its parallax were one arcsecond. This unit of measurement is usually used in astronomy which makes it easier for astronomers to calculate or measure in space accurately.
Answer:
Plzzzzzzzzzzzzzzzz brainliest
Explanation:
In static friction, the frictional force resists force that is applied to an object, and the object remains at rest until the force of static friction is overcome. In kinetic friction, the frictional force resists the motion of an object. ... The frictional force itself is directed oppositely to the motion of the object.
Answer:
Differences between freefall and weightlessness are as follows:
<h3>
<u>Freefall</u></h3>
- When a body falls only under the influence of gravity, it is called free fall.
- Freefall is not possible in absence of gravity.
- A body falling in a vacuum is an example of free fall.
<h3>
<u>Weightlessness</u></h3>
- Weightlessness is a condition at which the apparent weight of body becomes zero.
- Weightlessness is possible in absence of gravity.
- A man in a free falling lift is an example of weightlessness.
Hope this helps....
Good luck on your assignment....
Answer:
The value to be reported is 5.48V
Explanation:
The RMS (root mean square) is defined as the value of voltage that will produce the same heating effect, or power dissipation, in circuit, as this AC voltage.
The RMS voltage is also called effective voltage because it is just as effective as DC voltage in providing power to an element.
It is expressed as =
where Vm is the maximum or peak value of the voltage
In calculating the RMS of the voltage , we simply divide the peak voltage by square root of 2 (√2)
=
=
= 5.48 V
Answer:
a) The current density ,J = 2.05×10^-5
b) The drift velocity Vd= 1.51×10^-15
Explanation:
The equation for the current density and drift velocity is given by:
J = i/A = (ne)×Vd
Where i= current
A = Are
Vd = drift velocity
e = charge ,q= 1.602 ×10^-19C
n = volume
Given: i = 5.8×10^-10A
Raduis,r = 3mm= 3.0×10^-3m
n = 8.49×10^28m^3
a) Current density, J =( 5.8×10^-10)/[3.142(3.0×10^-3)^2]
J = (5.8×10^-10) /(2.83×10^-5)
J = 2.05 ×10^-5
b) Drift velocity, Vd = J/ (ne)
Vd = (2.05×10^-5)/ (8.49×10^28)(1.602×10^-19)
Vd = (2.05×10^-5)/(1.36 ×10^10)
Vd = 1.51× 10^-5