Answer: 1.2m/s^2
Explanation: the force exerted on the car is 900N upwards
The mass of the car is 750kg
According to Newton's third law acceleration is proportional to force
F = ma
900 = 750a
a = 900/750
a = 1.2m/s^2
Transmission electron microscope
Answer:
7 hours
Explanation:
The total charge contained in the battery is

And this is a charge, since it is a current multiplied by a time:

The current drawn by each headlight (which is the charge consumed per second) is

Since we have two headlight, the total current drawn is

Therefore, the total charge consumed by the two headlights each hour is

So, the time before the battery is dead is

hmax = 5740.48 m. The maximum height that a cannonball fired at 420 m/s at a 53.0° angles is 5740.48m.
This is an example of parabolic launch. A cannonball is fired on flat ground at 420 m/s at a 53.0° angle and we have to calculate the maximum height that it reach.
V₀ = 420m/s and θ₀ = 53.0°
So, when the cannonball is fired it has horizontal and vertical components:
V₀ₓ = V₀ cos θ₀ = (420m/s)(cos 53°) = 252.76 m/s
V₀y = V₀ cos θ₀ = (420m/s)(cos 53°) = 335.43m/s
When the cannoball reach the maximum height the vertical velocity component is zero, that happens in a tₐ time:
Vy = V₀y - g tₐ = 0
tₐ = V₀y/g
tₐ = (335.43m/s)/(9.8m/s²) = 34.23s
Then, the maximum height is reached in the instant tₐ = 34.23s:
h = V₀y tₐ - 1/2g tₐ²
hmax = (335.43m/s)(34.23s)-1/2(9.8m/s²)(34.23s)²
hmax = 11481.77m - 5741.29m
hmax = 5740.48m