Answer:
The track's angular velocity is W2 = 4.15 in rpm
Explanation:
Momentum angular can be find
I = m*r^2
P = I*W
So to use the conservation
P1 + P2 = 0
I1*W1 + I2*W2 = 0
Solve to w2 to find the angular velocity
0.240kg*0.30m^2*0.79m/s=-1kg*0.30m^2*W2
W2 = 0.435 rad/s
W2 = 4.15 rpm
The value of 'g' is not affected by rotation at any place on Earth.
Answer:
c.
Explanation:
Initial velocity of cheetah,u=1 m/s
Time taken by cheetah =4.8 s
Final velocity of cheetah,v=28 m/s
We have to find the acceleration of this cheetah.
We know that
Acceleration,
Where v=Final velocity of object
u=Initial velocity of object
t=Time taken by object
Using the formula
Then, we get
Acceleration, a=
Acceleration=
Hence, the acceleration of cheetah=
Answer:
150000000000 m
0.0000005 seconds
33.33 ns
Explanation:
Speed of electromagnetic waves through vacuum = 
Echo time = 1000 seconds
Echo time is the time taken to reach the object and come back to the observer
Distance = Speed×Time

Venus is 150000000000 m away from Earth
Time = Distance / Speed

Echo time will be twice the time

The echo time will be 0.0000005 seconds
Difference in time = Difference in distance / Speed

The accuracy by which I will be able to measure the echo time is 33.33 ns
Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you