Answer:
Explanation:
Area of square loop = L²
Flux Φ = area x magnetic field
= L²B
Frequency = f
angular velocity ω = 2πf
a )
Let at time t = 0 , the magnetic field is making 90 degree with the face of the loop
flux through loop = L²B
After time t , coil will turn by angle ω t = 2πft
Flux through the loop = L²B cosω t
Φ (t) = L²B cosω t
= L²B cos2πft
b )
emf induced e
= - d/dt [Φ (t)]
= - d/dt [ L²B cosω t]
= L²B ω sinω t
= L²B 2πf sin2πft
c )
current = e / R
(L²B ω/ R ) sinω t
Power delivered
P(t) = VI ,
VOLT X CURRENT
= AB ω sinω t X ( AB ω/ R ) sinω t
= L⁴B² 4π²f²/R sin²2πft
e )
torque = MB sinω t
τ(t) = i(L²B ) sinω t
= (L²B ω/ R ) sinω t x (L²B ) sinω t
= (L²B )²ω/ R sin²ω t
= (L²B )² 2πf/ R sin²2πft
The answer will be neutral because the same number of protons and the same number of electrons
Answer:
yes, eye color, hair color etc.
Answer : The cell potential for this cell 0.434 V
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^o_{[Cu^{2+}/Cu]}=0.34V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D0.34V)
![E^o_{[Ag^{+}/Ag]}=0.80V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D0.80V)
![E^o=E^o_{[Ag^{+}/Ag]}-E^o_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5Eo%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the concentration of cell potential for this cell.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCu%5E%7B2%2B%7D%5D%5BAg%5D%5E2%7D%7B%5BCu%5D%5BAg%5E%2B%5D%5E2%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this cell 0.434 V
Answer:
People have been aware of magnets and magnetism for thousands of years. The earliest records date back to ancient times, particularly in the region of Asia Minor called Magnesia-the name of this region is the source of words like magnet. Magnetic rocks found in Magnesia, which is now part of western Turkey, stimulated interest during ancient times. When humans first discovered magnetic rocks, they likely found that certain parts of these rocks attracted bits of iron or other magnetic rocks more strongly than other parts. These areas are called the poles of a magnet. A magnetic pole is the part of a magnet that exerts the strongest force on other magnets or magnetic material, such as iron. For example, the poles of the bar magnet shown in Figure 20.2 are where the paper clips are concentrated.