(1) The harmonic number for the mode of oscillation is 3.
(2) The pitch (frequency) of the sound is 579.55 Hz
(3) The level of the water inside the vertical pipe is 0.1 m.
<h3>The harmonic number</h3>
The harmonic number for the mode of oscillation illustrated for the closed pipe is 3.
<h3>Frequency of the wave</h3>
The pitch (frequency) of the sound is calculated from third harmonic formula;
f = 3v/4L
where;
- v is speed of sound
- L is length of the pipe
f = (3 x 340) / (4 x 0.44)
f = 579.55 Hz
<h3>level of the water</h3>
wave equation for first harmonic of a closed pipe is given as
f = v/(4L)
251.1 = 340/(4L)
4L = 340/251.1
4L = 1.35
L = 1.35/4
L = 0.34 m
level of water = 0.44 m - 0.34 m = 0.1 m
Thus, the level of the water inside the vertical pipe is 0.1 m.
Learn more about harmonics of closed pipes here: brainly.com/question/27248821
#SPJ1
Answer:
40mph
Explanation:
1st leg DATA:
time = 3 hrs ; speed = r mph ; distance = 3r miles
------------
2nd leg DATA:
speed = r mph ; distance = 12 miles
--------------------------------
3r + 12 = 132
3r = 120
rate = 40 mph
Answer:
The final graph
Explanation:
The graph that curves downwards is negative acceleration. While the position decreases the slop increases.
1) First of all, let's find the resistance of the wire by using Ohm's law:

where V is the potential difference applied on the wire, I the current and R the resistance. For the resistor in the problem we have:

2) Now that we have the value of the resistance, we can find the resistivity of the wire

by using the following relationship:

Where A is the cross-sectional area of the wire and L its length.
We already have its length

, while we need to calculate the area A starting from the radius:

And now we can find the resistivity:
Answer:
See attached file :)
Hope this helps!
All the love, Ya boi Fraser :)