Temperature is absolute while heat is relative. The direction of heat always travels from the warmer object to the cooler! Hope this helps!
<span>2Kg50m/
s2.5m/
s2<span>2m/
s2</span></span>
It's the "objective" lens ... the big one in the front.
Complete question is;. A 73mH solenoid inductor is wound on a form that is 0.80m long and 0.10m in diameter a coil having a resistance of 7.7 ohms is tightly wound around the solenoid at its center the mutual inductance of the coil and solenoid is 19μH at a given instant the current in the solenoid is 820mA and is decreasing at the rate of 2.5A/s at the given instant what is the induced current in the coil
Answer:
6.169 μA
Explanation:
Formula for induced EMF is given by the equation;
EMF = M(di/dt). We are given;
di/dt = 2.5 A/s
M = 19μH = 19 × 10^(-6) H
Thus;
EMF = 19 × 10^(-6) × 2.5.
EMF = 47.5 × 10^(-6) V
Formula for current is;
i = EMF/R. R is resistance given as 7.7 ohms.
Thus; i = 47.5 × 10^(-6)/7.7
i = 6.169 μA
Answer: the contents of this container weighs 4905 kg.m/s²
Explanation:
Given that;
volume of a container V = 0.5 m³
we know that standard gravitational acceleration g = 9.81 m/s²
specific volume of liquid filled in the container v = 0.001 m³/kg
now we express the equation for weight of the container.
W = mg
W = (pV)g
W = Vg / ν
so we substitute
W = (0.5 m³)(9.81 m/s ) / 0.001 m³/kg
W = 4.905 / 0.001
W = 4905 kg.m/s²
Therefore, the contents of this container weighs 4905 kg.m/s²