The correct answer is A because
for every action, there is an equal and opposite reaction.
The statement means that in every interaction, there is a pair of forces acting on the two interacting objects. The size of the forces on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.
Answer:
T=1.566 N.m
Explanation:
Given that:
rotational speed of the scrank shaft, N = 2500 rpm
power produced by one cylinder, P = 410 W
We know, in case of rotational power:

where: T= torque
Substituting the respective values in the above eq.


T=1.566 N.m is the torque applied by the each piston of the engine.
Answer: A glass object receives a positive charge of +3 nC by rubbing it with a silk cloth. In the rubbing process electrons been removed from it.
Explanation:
It is known that for every atom the protons and neutrons reside in the nucleus of the atom. Whereas electrons move outside the nucleus of an atom. As a result, electrons are able to transfer more easily from one substance to another as compared to the protons.
This is because protons are tightly held by the nucleus of an atom. Whereas electrons are mobile in nature and hence, they can easily move.
Therefore, positive charge on the glass develops due to the removal of electrons from it.
thus, we can conclude that in the given process electrons been removed from the glass object.
Potential energy is in short, stored energy
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.