Answer:
Imp = 25 [kg*m/s]
v₂= 20 [m/s]
Explanation:
In order to solve these problems, we must use the principle of conservation of linear momentum or momentum.
1)

where:
m₁ = mass of the object = 5 [kg]
v₁ = initial velocity = 0 (initially at rest)
F = force = 5 [N]
t = time = 5 [s]
v₂ = velocity after the momentum [m/s]
![(5*0) +(5*5) = (m_{1}*v_{2}) = Imp\\Imp = 25 [kg*m/s]](https://tex.z-dn.net/?f=%285%2A0%29%20%2B%285%2A5%29%20%3D%20%28m_%7B1%7D%2Av_%7B2%7D%29%20%3D%20Imp%5C%5CImp%20%3D%2025%20%5Bkg%2Am%2Fs%5D)
2)
![(m_{1}*v_{1})+(F*t)=(m_{1}*v_{2})\\(0.075*0)+(30*0.05)=(0.075*v_{2})\\v_{2}=20 [m/s]](https://tex.z-dn.net/?f=%28m_%7B1%7D%2Av_%7B1%7D%29%2B%28F%2At%29%3D%28m_%7B1%7D%2Av_%7B2%7D%29%5C%5C%280.075%2A0%29%2B%2830%2A0.05%29%3D%280.075%2Av_%7B2%7D%29%5C%5Cv_%7B2%7D%3D20%20%5Bm%2Fs%5D)
Answer:
0.0928km/min (4dp)
Explanation:
To find the jogger's speed in km per minute, we just need to divide the number of km jogged by the time in minutes it took to jog that distance. This will give us the distance they jogged every minute which is their speed.
4km in 32 minutes:
4/32 = 0.125km/min
2km in 22 minutes:
2/22 = 0.091 (3dp)km/min
1km in 16 minutes:
0.0625km/min
Now to find the average speed of these 3 speeds, we just add them all together and divide by how many values there are (3 values).
Average (mean) = 
Average = 0.2785/3
Average speed of jogger = 0.0928 (4dp) km/min
Hope this helped!
Answer:
At a convergent boundary where both plates are continental, mountain ranges grow and earthquakes are common. At a transform boundary, there is a transform fault and massive earthquakes occur but there are no volcanoes. Processes acting over long periods of time create Earth's geographic features.
Explanation: