Let us assume that rocket only runs in initial energy and not using its own to flying.
Also , let upward direction is +ve and downward direction is -ve .
Initial velocity , u = 58.8 m/s .
Acceleration due to gravity ,
.
Final velocity , v - = 0 m/s .
We know , by equation of motion .

Hence, this is the required solution .
Answer:
wait what do u mean by healthy beccause i choose C
Explanation:
At 100 km/hr, the car's kinetic energy is
KE = (1/2) (mass) (speed)²
KE = (1/2) (1575 kg) ( [100 km/hr] x [1000 m/km] x [1 hr/3600 sec] )²
KE = (787.5 kg) (27.78 m/s)²
KE = 607,639 Joules
In order to deliver this energy in 2.9 seconds, the engine must supply
(607,639 J / 2.9 sec) = 209,531 watts
<em>Power = 281 HP</em>
Answer:
The wavelength of light is 
Explanation:
Given that,
Angle = 13.1°
Number of slits = 5000
We need to calculate the wavelength of light
Diffraction of first order is defined as,
.....(I)
The separation of the slits



Now put the value in equation (I)

Here, n = 1

Hence, The wavelength of light is 
At the ground the ball will always have velocity along the direction of gravity. If upward motion is taken positive it will always have negative velocity at the ground because, if the ball was given an initial upward velocity then gravity will decelerate it and bring it down with a negative final velocity. If the ball is given an initial downward velocity then the ball will be further accelerated by gravity in the downward direction only, again maintaining negative direction. The magnitude however in both cases will be different. the final velocity at the ground will have higher magnitude in case of elevator moving downwards.