The outer planets have a high gravity due to their large size
To solve this problem we will derive the expression of the precession period from the moment of inertia of the given object. We will convert the units that are not in SI, and finally we will find the precession period with the variables found. Let's start defining the moment of inertia.

Here,
M = Mass
R = Radius of the hoop
The precession frequency is given as

Here,
M = Mass
g= Acceleration due to gravity
d = Distance of center of mass from pivot
I = Moment of inertia
= Angular velocity
Replacing the value for moment of inertia


The value for our angular velocity is not in SI, then


Replacing our values we have that


The precession frequency is




Therefore the precession period is 5.4s
•Every action has an equal and opposite reaction (the object is putting force on the target, and the target is putting an equal amount of force back)
•Am object in motion (the object) will stay in motion unless an outside force acts upon it (the Target)
And as for the third one I really don’t know, those seem to be the only two, I’m sorry. I did what a could, Hope it kinda helps :)