Answer:
The minumum speed the pail must have at its highest point if no water is to spill from it
= 2.64 m/s
Explanation:
Working with the forces acting on the water in the pail at any point.
The weight of water is always directed downwards.
The normal force exerted on the water by the pail is always directed towards the centre of the circle of the circular motion.
And the centripetal force, which keeps the system in its circular motion, is the net force as a result of those two previously mentioned force.
At the highest point of the motion, the top of the vertical circle, the weight and the normal force on the water are both directed downwards.
Net force = W + (normal force)
But the speed of this motion can be lowered enough to a point where the normal force becomes zero at the moment the pail reaches the highest point of its motion. Any speed lower than this value would result in the water spilling out of the pail. The water would not be able to resist the force of gravity.
At this point of minimum velocity,
Normal force = 0
Net force = W
Net force = centripetal force = (mv²/r)
W = mg
(mv²/r) = mg
r = 0.710 m
g = 9.8 m/s²
v² = gr = 9.8 × 0.71 = 6.958
v = √(6.958) = 2.64 m/s
Hope this Helps!!!
Answer:
They host three or more distinct ecosystems at different elevations.
Explanation:
I checked it, and its right.
Answer:
1703.24J
Explanation:
Given parameters:
Mass of brick = 7.9kg
Height of building = 22m
Unknown:
Potential energy of the brick = ?
Solution:
The potential energy of a body is the energy at rest of the body. Mathematically;
P.E = mgh
m is the mass of the brick
g is the acceleration due to gravity
h is the height of the building
Insert the given parameters and solve;
P.E = 7.9 x 9.8 x 22 = 1703.24J
Answer:
<h3>1.43m/s²</h3>
Explanation:
According to newtons second law.
F = mass * acceleration
If the doll has a mass of 0.2 kg, and the robot has a mass of 0.5 kg, the resulting mass will be 0.7kg
Force applied = 1N
acceleration = Force/mass
Substitute the values and get acceleration
acceleration = 1/0.7
acceleration = 1.43m/s²
Hence the magnitude of the acceleration of the robot is 1.43m/s²