Answer:
Basic kinematics, negating drag and assuming ideal conditions, we use the equation:
d=vi*t+1/2*a*t^2
Since vi is 0 (we know this because you’re dropping it, not throwing it)…
…and the only acceleration acting on it is gravity, a=9.8 m/s^2…
…we get
d=1/2(9.8)(5)^2
Explanation:
Some quick mental math tells us that this is about 125 m.
Plugging it in, we find it to be 122.5 m.
Answer:
Major term is 'things that provide intense gravity'
Minor term is 'extremely dense objects'
Middle term is 'neutron stars'
Explanation:
- Major term is given by the predicate part of the conclusion
- Minor term is given by the subject part of sentence in conclusion
- Middle term is given by the subject part and not the conclusion
200 N, that is if the force is balanced and the wall doesn't move
In mechanics, the net force is the vector sum of forces acting on a particular or object