Answer:
month = input("Input the month (e.g. January, February etc.): ")
day = int(input("Input the day: "))
if month in ('January', 'February', 'March'):
season = 'winter'
elif month in ('April', 'May', 'June'):
season = 'spring'
elif month in ('July', 'August', 'September'):
season = 'summer'
else:
season = 'autumn'
if (month == 'March') and (day > 19):
season = 'spring'
elif (month == 'June') and (day > 20):
season = 'summer'
elif (month == 'September') and (day > 21):
season = 'autumn'
elif (month == 'December') and (day > 20):
season = 'winter'
print("Season is",season)
Explanation:
Answer:
a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s
Explanation:
Diffusion is governed by Arrhenius equation

I will be using R in the equation instead of k_b as the problem asks for molar activation energy
I will be using

and
°C + 273 = K
here, adjust your precision as neccessary
Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm
So:

and

You might notice that these equations have the form of

You can solve this equation system easily using calculator, and you will eventually get

After you got those 2 parameters, the rest is easy, you can just plug them all including the given temperature of 1180°C into the Arrhenius equation

And you should get D = 2.76*10^-16 m^/s as an answer for c)
Answer:
Heat flux of CO₂ in cgs
= 170.86 x 10⁻⁹ mol / cm²s
SI units
170.86 x 10⁻⁸ kmol/m²s
Explanation:
A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined
Assumptions :
1. Steady operating conditions exist.
2. Kinetic and potential energy changes are negligible.
Properties: The specific heat of geothermal water (
[) is taken to be 4.18 kJ/kg.ºC.
Analysis (a) We need properties of isobutane, we can obtain the properties from EES.
a. Turbine
P
=
b. Pump


c. 