1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
9966 [12]
4 years ago
10

Consider a 0.15-mm-diameter air bubble in a liquid. Determine the pressure difference between the inside and outside of the air

bubble if the surface tension at the air-liquid interface is a. 0.1 N/m. b. 0.12 N/m.
Engineering
1 answer:
777dan777 [17]4 years ago
4 0

Answer:

a)\Delta P= 2666.66 Pa

b)\Delta P= 3200 Pa

Explanation:

Given that

Diameter ,d= 0.15 mm

We know that pressure difference is given as

\Delta P=\dfrac{4\sigma }{d}

Now by putting the values

When surface tension 0.1 N/m  :

The surface tension ,\sigma=0.1\ N/m

\Delta P=\dfrac{4\times 0.1 }{0.15}\times 10^3\ Pa

\Delta P= 2666.66 Pa

When surface tension 0.12 N/m  :

The surface tension ,\sigma=0.12\ N/m

\Delta P=\dfrac{4\times 0.12 }{0.15}\times 10^3\ Pa

\Delta P= 3200 Pa

a)\Delta P= 2666.66 Pa

b)\Delta P= 3200 Pa

You might be interested in
A phase angle in the frequency domain corresponds to
Vedmedyk [2.9K]

Answer:

c. a delay or advance in time as compared to a pure cosine wave.

Explanation:

Electrical phase is measured in degrees, with 360° corresponding to a complete cycle. A sinusoidal voltage is proportional to the cosine or sine of the phase. Phase difference , also called phase angle , in degrees is conventionally defined as a number greater than -180, and less than or equal to +180.

The phase angle corresponds to delay or advance in time as compared to a pure cosine wave.

7 0
4 years ago
Catch of the day:
Komok [63]
I’m gonna go with b.
7 0
3 years ago
Read 2 more answers
The denominator of a fraction is 4 more than the numenator. If 4 is added to the numenator and 7 is added to the denominator, th
kati45 [8]

Answer:

\frac{3}{7}

Explanation:

Lets take the numerator of the fraction to be = x

So the denominator of the fraction is 4 more than the numerator = x+4

The fraction is ;\frac{x}{4+x}

Now add 4 to the numerator and add 7 to the denominator as;

\frac{x+4}{4+x+7} =\frac{x+4}{x+11}

This new fraction is equal to 1 half =1/2

write the equation as;

\frac{x+4}{x+11} =\frac{1}{2}

perform cross-product

2(x+4 )=1( x+11 )

2x+8 = x + 11

2x-x = 11-8

x=3

The original fraction is;  

\frac{x}{4+x} =\frac{3}{3+4} =\frac{3}{7}

3 0
3 years ago
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
4 years ago
Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2/s is being discharged by an 8-mm-diameter, 42-m-long horiz
sladkih [1.3K]

Answer:

The flow rate of oil through the pipe is 1.513E-7 m³/s.

Explanation:

Given

Density, ρ = 850 kg/m³

Kinematic viscosity, v = 0.00062 m²/s

Diameter, d = 8-mm = 0.008m

Length of horizontal pipe, L = 42-m

Height, h = 4-m.

We'll solve the flow rate of oil through the pipe by using Hagen-Poiseuille equation.

This is given as

∆P = (128μLQ)/πD⁴

Where ∆P = Rate of change of pressure

μ = Dynamic Viscosity

Q = Flow rate of oil through the pipe.

First, we need to determine the dynamic viscosity and the rate of change in pressure

Dynamic Viscosity, μ = Density (ρ) * Kinematic viscosity (v)

μ = 850 kg/m³ * 0.00062 m²/s

μ = 0.527kg/ms

Then, we calculate the rate of change of pressure.

Assuming that the velocity through the pipe is so small;

∆P = Pressure at the bottom of the tank

∆P = Density (ρ) * Acceleration of gravity (g) * Height (h)

Taking g = 9.8m/s²

∆P = 850kg/m³ x 9.8m/s² x 4m

∆P = 33320N/m²

Recall that Hagen-Poiseuille equation.

∆P = (128μLQ)/πD⁴ --- Make Q the subject of formula

Q = (πD⁴P)/(128μL)

By substituton;

Q = (π * 0.008⁴ * 33320)/(128 * 0.527 * 42)

Q = 0.00000015133693643099

Q = 1.513E-7 m³/s.

Hence, the flow rate of oil through the pipe is 1.513E-7 m³/s.

8 0
3 years ago
Other questions:
  • The capacitor can withstand a peak voltage of 600 volts. If the voltage source operates at the resonance frequency, what maximum
    7·2 answers
  • In case the Rectilinear distance is considered, find the optimal coordinates (X,Y) of new facility. Q2) Show and label the exist
    7·1 answer
  • What made computers different from machines that came before them?
    7·2 answers
  • An exclusive 20-year right to manufacture a product or use a process is a: Franchise. Trademark. Patent. Copyright.
    6·1 answer
  • Which one is an example of a digital input?
    5·1 answer
  • A silicon diode has a saturation current of 6 nA at 25 degrees Celcius. What is the saturation current at 100 degrees Celsius?
    15·1 answer
  • The in-situ dry density of a sand is 1.72Mg/m3. The maximum and minimum drydensities, determined by standard laboratory tests, a
    5·1 answer
  • A barometer reads a height of 78 cmHg. Express this atmospheric pressure to:
    15·2 answers
  • An engine has been diagnosed with blowby.
    12·1 answer
  • When converting liquid level units to sensor output signal units, you should first convert the liquid level units to _____ units
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!