The expression representing this would be 24 × 50 × 2. You do not need parentheses because multiplication is commutative. Simplified this would then be 100 × 24 which is $2400 .
Answer: There are approximately 853827 new cases in 6 years.
Step-by-step explanation:
Since we have given that
Initial population = 570000
Rate at which population decreases is given by

Now,
First year =570000
Second year is given by

Third year is given by

so, there is common ratio ,
it becomes geometric progression, as there is exponential decline.
so,

a=570000
common ratio is given by

number of terms = 6
Sum of terms will be given by

We'll put this value in this formula,

So, there are approximately 853827 new cases in 6 years.
The tangent function gives the ratio of vertical to horizontal distance in this case.
.. vertical distance = (horizontal distance)*tan(angle of depression)
.. = (40 m)*tan(50°)
.. vertical distance ≈ 47.7 m
Answer:
x ≈ ±20.086/√(t - 1)
Step-by-step explanation:
ln(t - 1) + ln(x²) = 6
Recall that lnu + lnv = ln(uv). Then
ln(t - 1) + ln(x²) = ln[(t-1)x²] = 6
Take the natural antilogarithm of each side
(t - 1)x² = e⁶
Divide each side by t - 1
x² = e⁶/(t-1)
Take the square root of each side
x = ±e³/√(t - 1)
x ≈ ±20.086/√(t - 1)
We're told (5,-2) is on the line, that's x=5, y=-2
First one y-5 = -7, (x+2)/3=7/3, not equal
Second one y+5=3, (x-2)/3=1, not equal
Third one y+2=0, (x-5)/3=0, TRUE, equal
Fourth one, y-2=-4 (5+5)/3=10/3, not equal
Answer: third choice y+2 = (1/3)(x+5)