Answer:
The same amount of atoms (3 carbon atoms, 6 oxygen atoms, and 4 hydrogen atoms).
Explanation:
According to the law of conservation of mass, when a chemical reaction takes place there is no synthesis or degradation of matter, that is, <em>matter can be neither created nor destroyed</em>. It can only be transformed.
Therefore, in a <u>chemical reaction the atoms are conserved</u>. That means that the elements that in definite proportions are forming a compound, will reorganize to form new compounds, and <u>the amount and type of atoms of the products will be the same as the reactants</u>.
In summary, if the reactants in a chemical equation have 3 carbon atoms, 6 oxygen atoms, and 4 hydrogen atoms, the products of the chemical equation will have 3 carbon atoms, 6 oxygen atoms, and 4 hydrogen atoms as well.
The "sea of instability" refers to a region of elements on the periodic table that are highly unstable. These elements have extremely short half-lives that may be measured in micro- or nanoseconds. (A nanosecond is the time it takes for light to travel one foot.) This region of unstable elements surrounds the island of stability.
We have to get the amount of nitrogen to be consumed to get 0.75 moles of ammonia.
The amount of nitrogen (in grams) required to prepare 0.75 moles of ammonia is: 10.5 grams.
Ammonia (NH₃) can be prepared from nitrogen (N₂) as per following balanced chemical reaction-
N₂ (g) + 3H₂ (g) ⇄ 2NH₃ (g)
According to the above reaction, to prepare 2 moles of ammonia, one mole of nitrogen is required. Hence, to prepare 0.75 moles of ammonia,
moles = 0.375 moles of nitrogen is required.
Molar mass of nitrogen is 28 grams, i.e, mass of one mole of nitrogen is 28 grams, so mass of 0.375 moles of nitrogen is 0.375 X 28 grams=10.5 grams of nitrogen.
Therefore, the amount of nitrogen (in grams) required to prepare 0.75 moles of ammonia is 10.5 grams.
Lesser. atomic number means proton number