1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Simora [160]
2 years ago
13

How was life created after the Big Bang?

Physics
2 answers:
grin007 [14]2 years ago
4 0

The God particle is Makes life possible itself, after the universe was formed Numerous, chemicals, substances and bacterial were created. After several years the bacteria became life and evolved over millions and billions of years

Llana [10]2 years ago
3 0

<em>Answer:</em>

<em>here's what I've found !</em>

<em>Explanation:</em>

<em>refer to the attachment :</em>

You might be interested in
A rock is dropped into the Grand Canyon. It takes 18 seconds to hit the bottom. Calculate how deep the canyon is.
bonufazy [111]
The distance it falls is given by
x = (1/2)at^2
where a = acceleration due to gravity = 9.8 m/s^2
x = (1/2)(9.8)(18)^2
x = 1587.6 m
The answer is 1587.6 meters

6 0
2 years ago
What does an atomic nucleus give off a particle?
____ [38]
The correct answer is answer choice B.
5 0
3 years ago
2/25/20 or 2/28/20 Dispatch #53
mixer [17]

Answer:

Power = 21[W]

Explanation:

Initial data:

F = 35[N]

d = 18[m]

In order to solve this problem we must remember the definition of work, which tells us that it is equal to the product of a force for a distance.

Therefore:

Work = W = F*d = 35*18 = 630 [J]

And power is defined as the amount of work performed in a time interval.

Power = Work / time

Time = t = 30[s]

Power = 630/30

Power = 21 [W]

3 0
2 years ago
Un coche de 2200 Kg aumenta su velocidad de 60 a 100 Km/h en 20 segundos. Calcular la fuerza resultante que actúa sobre el coche
jonny [76]

aumenta su velocidad de 60 a 100 Km/h en 20 segundos. Calcular la fuerza resultante que actúa sobre el coche y el espacio recorrido en ese tiempo

6 0
2 years ago
A brick of mass 5 kg is released from rest at a height of 3 m. How fast is it going when it hits the ground? Acceleration due to
sineoko [7]

Taking into account the definition of kinetic, potencial and mechanical energy, when the brick hits the ground, it has a speed of 7,668 m/s.

<h3>Kinetic energy</h3>

Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.

Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and at rest, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its state of rest by applying a force.

The kinetic energy is represented by the following expression:

Ec= ½ mv²

Where:

  • Ec is the kinetic energy, which is measured in Joules (J).
  • m is the mass measured in kilograms (kg).
  • v is the speed measured in meters over seconds (m/s).

<h3>Potential energy</h3>

On the other hand, potential energy is the energy that measures the ability of a system to perform work based on its position. In other words, this is the energy that a body has at a certain height above the ground.

Gravitational potential energy is the energy associated with the gravitational force. This will depend on the relative height of an object to some reference point, the mass, and the force of gravity.

So for an object with mass m, at height h, the expression applied to the gravitational energy of the object is:

Ep= m×g×h

Where:

  • Ep is the potential energy in joules (J).
  • m is the mass in kilograms (kg).
  • h is the height in meters (m).
  • g is the acceleration of fall in m/s².
<h3>Mechanical energy</h3>

Finally, mechanical energy is that which a body or a system obtains as a result of the speed of its movement or its specific position, and which is capable of producing mechanical work. Then:

Potential energy + kinetic energy = total mechanical energy

<h3>Principle of conservation of mechanical energy </h3>

The principle of conservation of mechanical energy indicates that the mechanical energy of a body remains constant when all the forces acting on it are conservative (a force is conservative when the work it does on a body depends only on the initial and final points and not the path taken to get from one to the other.)

Therefore, if the potential energy decreases, the kinetic energy will increase. In the same way, if the kinetics decreases, the potential energy will increase.

<h3>This case</h3>

A brick of mass 5 kg is released from rest at a height of 3 m. Then, at this height, the brick of mass has no speed, so the kinetic energy has a value of zero because it depends on the speed or moving bodies. But the potential energy is calculated as:

Ep= 5 kg× 9.8 \frac{m}{s^{2} }× 3 m

Solving:

<u><em>Ep= 147 J</em></u>

So, the mechanical energy is calculated as:

Potential energy + kinetic energy = total mechanical energy

147 J +  0 J= total mechanical energy

147 J= total mechanical energy

The principle of conservation of mechanical energy  can be applied in this case. Then, when the brick hits the ground, the mechanical energy is 147 J. In this case, considering that the height is 0 m, the potential energy is zero because this energy depends on the relative height of the object. But the object has speed, so it will have kinetic energy. Then:

Potential energy + kinetic energy = total mechanical energy

0 J +  kinetic energy= 147 J

kinetic energy= 147 J

Considering the definition of kinetic energy:

½  5 kg×v²= 147 J

v=\sqrt{\frac{2x147 J}{5 kg} }

v=7.668 m/s

Finally, when the brick hits the ground, it has a speed of 7,668 m/s.

Learn more about mechanical energy:

brainly.com/question/17809741

brainly.com/question/14567080

brainly.com/question/12784057

brainly.com/question/10188030

brainly.com/question/11962904

#SPJ1

6 0
1 year ago
Other questions:
  • Wave A has a wavelength of 2 meters and a frequency of 1.5 Hz . calculate the wave's speed
    9·1 answer
  • The jovian moon with the most geologically active surface is
    13·1 answer
  • A major-league pitcher can throw a baseball in excess of 41.0 m/s. If a ball is thrown horizontally at this speed, how much will
    7·1 answer
  • Really need help with this Physics question!
    5·1 answer
  • Help!!!!!!!!!!!!!!!!!plz!!!!!!!!!!!!!!!!!!!!!
    10·2 answers
  • Find the potential energy associated with a 79-kg hiker atop New Hampshire's Mount Washington, 1900 m above sea level. Take the
    11·1 answer
  • Graph are pictorical representations of
    12·2 answers
  • How do you complete this circuit?
    8·1 answer
  • Calculate the force applied (in newtons) if a pressure of 2000Pa is acting on an area of 3m2.
    10·1 answer
  • 17. Saan daw nakasakay ang mga Austronesyan nang dumating sa bansa? A. Bangka B. balangay C galyon D. barko
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!