Answer:
The electromagnetic radiation with the shortest wavelength are gamma rays.
Explanation:
Photons are the particles that constitute light and its kwnow that lights propagates as electromagnetic waves.
The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.
The distribution of the radiation in the electromagnetic spectrum can also be given in wavelengths, but it is more frequent to work with it at frequencies, the highest being that of gamma rays, followed by X-rays, ultraviolet rays and the visible region , and those of lower frequencies, which correspond to infrared, microwave and radio waves.
The energy given for each wavelength can be found by means of the following equation.
(1)
but 

(2)
Where E is the energy, h is the planck's constant and
is the wavelength.
So, it can be see in equation 2 that when the wavelength increases the energy decreases (inversely proportional).
Hence, the electromagnetic radiation with the shortest wavelength are gamma rays.
Explanation:
The heart rate of the astronaut is 78.5 beats per minute, which means that the time between heart beats is 0.0127 min. This will be the time t measured by the moving observer. The time t' measured by the stationary Earth-based observer is given by

a) If the astronaut is moving at 0.480c, the time t' is


This means that time between his heart beats as measured by Earth-based observer is 0.0145 min, which is equivalent to 69.1 beats per minute.
b) At v = 0.940c, the time t' is


So at this speed, the astronaut's heart rate is 1/(0.0372 min) or 26.9 beats per minute.
First convert 90km/hr to m/s.
Initiate velocity = 0m/s (car was at rest)
Final velocity is 25m/s (90km/hr converted)
25m/s - 0m/s / 8s = 3.125 m/s^s
Therefore the answer is option A (3.13m/s^2)
A reactant since it is on the left of the arrow
Answer:
100 ly are 
Explanation:
The speed of light is, by definition (we define this and derive a definition of distance from there nowadays), c=299792458m/s. We want to know, at this speed, how much distance the radio signals travel in 100 years. Since each year has 365 days (not a leap one though), each day has 24 hours, each hour has 60 minutes and each minute has 60 seconds, the number of seconds in a year will be (365)(24)(60)(60)=31536000, so the distance traveled by the waves in 100 years will be:
, which, of course, are 100 light years.