The energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
<h3>Change in energy level of the electron</h3>
When photons jump from a higher energy level to a lower level, they emit or radiate energy.
The change in energy level of the electrons is calculated as follows;
ΔE = Eb - Ef
ΔE = -2.68 eV - (-5.74 eV)
ΔE = 3.06 eV
Thus, the energy of the photon emitted when an electron in a mercury atom drops from energy level f to energy level b is 3.06 eV.
Learn more about energy level here: brainly.com/question/14287666
#SPJ1
Answer:
Motors commonly contain a "commutator" which allows a magnetic field due to a loop of wire to always be in a say "clockwise or counterclockwise" direction even tho the loop of wire is rotating.
That means that magnetic field due to the surrounding magnets is always in the same direction, but the magnetic field due to the rotating loop of wire is continually changing so that it will always oppose the surrounding field which remains in a constant direction.
This is most easily seen in a "DC - direct current motor".
the answer is B! it would continue to expand.....just took the test XD
Answer:
Θ
Θ
Θ = 
Explanation:
Applying the law of conservation of momentum, we have:
Δ

Θ (Equation 1)
Δ

Θ (Equation 2)
From Equation 1:
Θ
From Equation 2:
sinΘ = 

Replacing Equation 3 in Equation 4:


Θ (Equation 5)
And we found Θ from the Equation 5:
tanΘ=
Θ=
Answer:
Potential energy
Kinetic energy
Gravitational energy.
Explanation:
The potential energy is the stored energy, it is the energy and object posses at rest. When the base jumper is still at rest i.e without motion, she has potential energy.
Gravitational energy this refer to the potential energy an object or body with mass posses in relation to another object due to gravity.
This is seen when the base number is still at rest and the force of gravity on the Earth acting on her.
Kinetic energy is the energy posses by an object or body in motion.
As the base jumper falls to the ground, she posses kinetic energy which is the energy in motion.